
CICS® Transaction Server for OS/390®

CICS Transaction Affinities Utility Guide
Release 3

SC33-1777-02

IBM

CICS® Transaction Server for OS/390®

CICS Transaction Affinities Utility Guide
Release 3

SC33-1777-02

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

Third edition (March 1999)

This edition applies to Release 3 of CICS Transaction Server for OS/390, program number 5655-147, and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

This edition replaces and makes obsolete the previous edition, SC33-1777-01. The technical changes for this edition
are summarized under ″Summary of changes″ and are indicated by a vertical bar to the left of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices . vii
Trademarks . viii

Preface . ix
What this book is about . ix

Who this book is for. ix
What you need to know to understand this book ix
How to use this book . ix
Determining if a publication is current ix
Notes on terminology . x

Bibliography . xi
CICS Transaction Server for OS/390 xi

CICS books for CICS Transaction Server for OS/390 xi
CICSPlex SM books for CICS Transaction Server for OS/390 xii
Other CICS books . xii

Summary of changes . xiii
Changes for the CICS Transaction Server for OS/390 Release 3 edition . . . xiii
Changes for the CICS Transaction Server for OS/390 Release 2 edition . . . xiii
Changes for the CICS Transaction Server for OS/390 Release 1 edition . . . xiii

Chapter 1. Introducing transaction affinities 1
The benefits of dynamic routing 3

What does dynamic routing cost?. 3
Transaction affinities . 3

Inter-transaction affinity . 4
Transaction-system affinity 4
Affinity relations . 4
Affinity lifetimes . 5

CICS programming techniques for transaction affinity 5
Safe programming techniques 6
Unsafe programming techniques 6
Suspect programming techniques. 6

Avoiding the effects of transaction affinity 6
Protecting applications from one another 7

Chapter 2. Introducing the Transaction Affinities Utility 9
Commands detected by the Transaction Affinities Utility 11
The Scanner component . 12
The Detector component . 12

What is detected . 13
What is not detected . 14
Controlling the Detector . 15
How the affinity data is collected 15
Saving affinity data . 16
The affinity data VSAM files 17
The control record VSAM file 17
Detector performance . 18

The Reporter component . 18
The Builder component . 18

Chapter 3. Preparing to use the affinity utility program 21

© Copyright IBM Corp. 1994, 1999 iii

Creating the VSAM files . 21
Estimating the size of the MVS data space and VSAM files 21
Defining the VSAM files to CICS 22
Tailoring your CICS startup job. 23
Restarting your CICS region 23

Chapter 4. Running the Scanner 25
Creating a summary report . 25
Creating a detailed report . 27

Contents of a detailed report 28

Chapter 5. Running the Detector 31
Displaying the Detector control screen 32
Starting the collection of affinity data 33
Pausing the collection of affinity data 34
Resuming the collection of affinity data. 34
Stopping the collection of affinity data 35
Changing the Detector options 36
Detector errors . 39

Chapter 6. Running the Reporter 41
Requesting a report from the Reporter 41
Output from the Reporter . 42

Affinity report . 43
Producing affinity transaction group definitions 46

Using the affinity report . 47
Understanding the affinities 48
Modifying affinity transaction groups 48

Compressing affinity data. 49
Using the IBM Cross System Product 50

Affinity analysis for a CICS region containing CSP 3.3 applications 50
Detailed affinity analysis . 51

Chapter 7. Running the Builder 55
Syntax for input to the Builder 56

HEADER statements . 58
Output from the Builder . 58

Combined affinity transaction group definitions 58
Data sets processed report 61
Empty transaction groups report 61
Group merge report . 61
Error report . 62

Appendix A. Details of what is detected 65
ENQ/DEQ . 65
TS commands. 66
LOAD HOLD/RELEASE . 66
RETRIEVE WAIT/START . 66
ADDRESS CWA . 67
GETMAIN SHARED/FREEMAIN 67
LOAD/FREEMAIN . 67
CANCEL/DELAY/POST/START 68
SPI commands . 69
WAIT commands . 69

Appendix B. Correlating Scanner and Reporter output to source 71

iv CICS Transaction Affinities Utility Guide

Reporter output . 71
Scanner output . 71

Examples . 71

Appendix C. Useful tips when analyzing Transaction Affinities Utility
reports . 75

COBOL affinities . 75
LOGON or SYSTEM when PCONV expected 75
Unrecognized Transids . 75

Appendix D. Diagnostics . 77
Detector table manager diagnostics 77

Function code values . 77
Detector CAFB request queue manager diagnostics 80

Function code values . 80
Date formatter diagnostics . 80

Reason code values . 80

Index . 81

Sending your comments to IBM 85

Contents v

vi CICS Transaction Affinities Utility Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

© Copyright IBM Corp. 1994, 1999 vii

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

Trademarks

The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

BookManager DB2
CICS IBM
CICS/ESA Language Environment
CICSPlex VTAM

Other company, product, and service names may be trademarks or service marks
of others.

viii CICS Transaction Affinities Utility Guide

Preface

What this book is about

This book describes the affinity utility program . It explains what the utility does,
how to install it, and how to run the various components of the utility.

Who this book is for

This book is for CICS system programmers who may be planning to use CICS
dynamic routing for workload balancing, and need to determine whether any of the
transactions in their CICS applications use programming techniques that cause
inter-transaction affinity. It can also be used by application programmers to detect
whether application programs they are developing are likely to cause
inter-transaction affinity.

In particular, this book is of interest to CICS system programmers who are planning
to use the CICSPlex®SM element of CICS Transaction Server for OS/390 Release
3 for workload balancing. For more information about CICSPlex SM, see the
CICSPlex SM Concepts and Planning manual.

It is also of use if you are planning to implement asynchronous processing using
CICS function shipping or are planning to use the CICS transaction isolation facility.

What you need to know to understand this book

You need to be familiar with the CICS application programming interface (API) and
the various programming techniques available to CICS application programmers. In
particular, you should be familiar with those techniques that CICS application
programs can use to pass data from one to another, such as sharing common
storage, and techniques to synchronize their execution.

“Chapter 1. Introducing transaction affinities” on page 1 gives a brief introduction to
the inter-transaction affinity that can be caused by some of these techniques. For a
full discussion of transaction affinities, see the CICS Application Programming
Guide.

How to use this book

This book is intended to be read sequentially, so that you understand how to:

1. Install the affinity utility

2. Run the separate components

Later, when you are familiar with the utility, you need only refer to the chapter
dealing with the particular component that you want to run.

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager softcopy versions of a publication are

© Copyright IBM Corp. 1994, 1999 ix

usually in step. However, due to the time required to print and distribute hardcopy
books, the BookManager version is more likely to have had last-minute changes
made to it before publication.

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each
reissue of the collection kit is indicated by an updated order number suffix (the -xx
part). For example, collection kit SK2T-0730-06 is more up-to-date than
SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

Notes on terminology
CICS In general, this book refers to the Customer Information Control System as

“CICS”, the element in the CICS Transaction Server for OS/390.

MVS “MVS” is used for the operating system, which is an element of the CICS
Transaction Server for OS/390.

Argument zero
When an EXEC CICS command is translated and compiled, it results in an
encoded parameter list to be used with a call statement. The first parameter
in this list is a constant known as the CICS argument zero . The first two
bytes of this constant identify the command; for example, X'0A04' identifies
it as a READQ TS command.

x CICS Transaction Affinities Utility Guide

Bibliography

CICS Transaction Server for OS/390

CICS Transaction Server for OS/390: Planning for Installation GC33-1789
CICS Transaction Server for OS/390 Release Guide GC34-5352
CICS Transaction Server for OS/390 Migration Guide GC34-5353
CICS Transaction Server for OS/390 Installation Guide GC33-1681
CICS Transaction Server for OS/390 Program Directory GI10-2506
CICS Transaction Server for OS/390 Licensed Program Specification GC33-1707

CICS books for CICS Transaction Server for OS/390

General
CICS Master Index SC33-1704
CICS User’s Handbook SX33-6104
CICS Transaction Server for OS/390 Glossary (softcopy only) GC33-1705

Administration
CICS System Definition Guide SC33-1682
CICS Customization Guide SC33-1683
CICS Resource Definition Guide SC33-1684
CICS Operations and Utilities Guide SC33-1685
CICS Supplied Transactions SC33-1686

Programming
CICS Application Programming Guide SC33-1687
CICS Application Programming Reference SC33-1688
CICS System Programming Reference SC33-1689
CICS Front End Programming Interface User’s Guide SC33-1692
CICS C++ OO Class Libraries SC34-5455
CICS Distributed Transaction Programming Guide SC33-1691
CICS Business Transaction Services SC34-5268

Diagnosis
CICS Problem Determination Guide GC33-1693
CICS Messages and Codes GC33-1694
CICS Diagnosis Reference LY33-6088
CICS Data Areas LY33-6089
CICS Trace Entries SC34-5446
CICS Supplementary Data Areas LY33-6090

Communication
CICS Intercommunication Guide SC33-1695
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697
CICS External Interfaces Guide SC33-1944
CICS Internet Guide SC34-5445

Special topics
CICS Recovery and Restart Guide SC33-1698
CICS Performance Guide SC33-1699
CICS IMS Database Control Guide SC33-1700
CICS RACF Security Guide SC33-1701
CICS Shared Data Tables Guide SC33-1702
CICS Transaction Affinities Utility Guide SC33-1777
CICS DB2 Guide SC33-1939

© Copyright IBM Corp. 1994, 1999 xi

CICSPlex SM books for CICS Transaction Server for OS/390

General
CICSPlex SM Master Index SC33-1812
CICSPlex SM Concepts and Planning GC33-0786
CICSPlex SM User Interface Guide SC33-0788
CICSPlex SM View Commands Reference Summary SX33-6099

Administration and Management
CICSPlex SM Administration SC34-5401
CICSPlex SM Operations Views Reference SC33-0789
CICSPlex SM Monitor Views Reference SC34-5402
CICSPlex SM Managing Workloads SC33-1807
CICSPlex SM Managing Resource Usage SC33-1808
CICSPlex SM Managing Business Applications SC33-1809

Programming
CICSPlex SM Application Programming Guide SC34-5457
CICSPlex SM Application Programming Reference SC34-5458

Diagnosis
CICSPlex SM Resource Tables Reference SC33-1220
CICSPlex SM Messages and Codes GC33-0790
CICSPlex SM Problem Determination GC33-0791

Other CICS books

CICS Application Programming Primer (VS COBOL II) SC33-0674
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

If you have any questions about the CICS Transaction Server for OS/390 library,
see CICS Transaction Server for OS/390: Planning for Installation which discusses
both hardcopy and softcopy books and the ways that the books can be ordered.

xii CICS Transaction Affinities Utility Guide

Summary of changes

The affinity utility program is an integral part of CICS Transaction Server for OS/390
and is for use only with the CICS Transaction Server for OS/390.

To use the utility on CICS for MVS/ESA 4.1 and earlier releases of CICS, install the
IBM CICS Transaction Affinities Utility MVS/ESA (program number 5696-582).

Changes for the CICS Transaction Server for OS/390 Release 3 edition

This book is based on the CICS Transaction Server for OS/390, release 2, edition,
SC33-1777-01.

Significant changes for this edition are indicated by vertical lines to the left of the
changes.

Changes for the CICS Transaction Server for OS/390 Release 2 edition

This book is based on the CICS Transaction Server for OS/390, release 1, edition,
SC33-1777-00.

A new section has been added to “Chapter 6. Running the Reporter” on page 41.
“Using the IBM Cross System Product” on page 50 describes the use of the
Transaction Affinities Utility with programs developed using the IBM Cross System
Product.

Changes for the CICS Transaction Server for OS/390 Release 1 edition

The chapter entitled “Installing the affinity utility” was renamed to “Preparing to use
the Transaction Affinities Utility”, and was largely rewritten.

The messages and codes previously published in Appendix C were moved to the
CICS Messages and Codes manual. The affinity utility program messages became
standard CICS messages. They are prefixed with the letters “DFH”, and have a
component identifier of “AU”.

© Copyright IBM Corp. 1994, 1999 xiii

xiv CICS Transaction Affinities Utility Guide

Chapter 1. Introducing transaction affinities

This chapter provides a brief introduction to the concept of transaction affinities and
the associated CICS programming techniques, and highlights the significance of
transaction affinities in a dynamic routing (known in previous releases of CICS as
dynamic transaction routing) environment. For more information about transaction
affinities, see the CICS Application Programming Guide.

This chapter introduces the following topics:

v “The benefits of dynamic routing” on page 3

v “Transaction affinities” on page 3

v “CICS programming techniques for transaction affinity” on page 5

v “Avoiding the effects of transaction affinity” on page 6

v “Protecting applications from one another” on page 7

CICS has been handling customers’ online transaction processing requirements for
over thirty years. In that time, it has been extensively enhanced to meet the
ever-growing needs of business applications, and to exploit the capabilities of
modern computer processors and communication systems. One of the most
significant enhancements in recent times is the addition of the dynamic routing
facility.

Originally, a full-function CICS ran in a single address space (region) within the
MVS environment. Currently, most CICS users use some form of
intercommunications to operate multiple, interconnected, CICS regions (a
CICSplex). Using the CICS multiregion operation (MRO) facility, a CICSplex
typically consists of one or more terminal-owning regions (TOR), and a number of
application-owning regions to which the TORs route the incoming transactions for
processing. The CICSPlex SM element of CICS Transaction Server for OS/390
Release 3 includes a workload management component that optimizes processor
capacity by dynamically routing transactions to whichever CICS region is the most
appropriate at the time, taking into account any transaction affinities that exist. For
an introduction to CICSPlex SM, see CICSPlex SM Concepts and Planning; for
information about CICSPlex SM workload management, see CICSPlex SM
Managing Workloads.

Before CICS Transaction Server for OS/390 Release 3, TORs routed transactions to
the AORs predefined in transaction resource definitions by the system programmer.
This static form of transaction routing adds to the system administration burden of
the system programmer, because when transaction workloads have to be
rebalanced across the AORs, transaction resource definitions have to be modified
accordingly.

CICS A CICS B
Terminal-Owning Application-Owning
Region (TOR) Region (AOR)

End-user MRO
terminal CICS Relay User

Transaction links Transaction

Figure 1. The CICS transaction routing facility

© Copyright IBM Corp. 1994, 1999 1

|
|

|

CICS Transaction Server for OS/390 Release 3 introduces extended dynamic
routing facilities, that allow the dynamic routing of:

v Transactions initiated at a terminal

v EXEC CICS START requests that are associated with a terminal

v EXEC CICS START requests that are not associated with a terminal

v Dynamic program link (DPL) requests that are received using:

– The CICS Web support

– The CICS Transaction Gateway

– External CICS interface (EXCI) client programs

– Any CICS client workstation products using the External Call Interface (ECI)

– Distributed Computing Environment (DCE) remote procedure calls (RPCs)

– Open Network Computing (ONC) RPCs

– Internet Inter-Object Request Block Protocol (IIOP)

– Any function that issues an EXEC CICS LINK PROGRAM request

v Transactions associated with CICS business transaction services (CICS BTS)
activities.

New terms have been introduced that describe the roles played by CICS regions in
dynamic routing:

Requesting region
The CICS region in which the dynamic routing request originates. For
transactions initiated at a terminal, and inbound client DPL requests, this is
typically a TOR. For terminal-related EXEC CICS START commands, for
non-terminal-related EXEC CICS START commands, for peer-to-peer DPLs,
and for CICS BTS activities, the requesting region is typically an AOR.

Routing region
The CICS region in which the decision is taken on where the transaction or
program should be run. For transactions initiated at a terminal, for EXEC
CICS START commands associated with a terminal, and for inbound client
DPL requests, this is typically a TOR. For non-terminla-related EXEC CICS
START commands, for peer-to-peer DPL requests, and for CICS BTS
activities, the routing region is typically an AOR.

Target region
The CICS region in which the transaction or program runs. For all
dynamically-routed requests, this is typically an AOR.

Full details about the new dynamic routing facilities are described in CICS
Intercommunication Guide.

The dynamic routing facility removes the need to specify the remote system name
of a target region in the transaction definition. Instead, you let the routing determine
dynamically to which target region it should route incoming transactions. Unlike
static routing, where there can only ever be one target region to which the routing
region can route a transaction, dynamic routing gives you the means to create
several target regions with the capability to process any given workload, and to let
the routing regions choose the best one from a candidate list.

2 CICS Transaction Affinities Utility Guide

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

The benefits of dynamic routing

Being able to route transactions to target regions dynamically offers many benefits
in an online transaction processing (OLTP) system. The user can achieve:

v Improved performance

v Improved availability

v Simplified systems management

What does dynamic routing cost?

Of course, the CICS-supplied code cannot determine where to send a transaction,
this depends on your CICS environment and routing policies. It needs a facility for
you to specify your routing policies in a form that CICS can use. This can be a
user-written dynamic routing program used to supply the name of a suitable target
region, or you can use the dynamic routing program EYU9XLOP provided with
CICSPlex SM.. You can define the name of a dynamic routing program on either
the DTRPGM system initialization (SIT) parameter, for terminal-related START and
dynamic program link (DPL) requests, or the DSRTPRG SIT parameter for
non-terminal-related START requests and CICS BTS processes.

At the basic level, a dynamic routing program simply contains tables of user
transaction identifiers, with the matching system identifiers (SYSIDs) of the target
regions that can process the transactions. At the highest and most sophisticated
level, the dynamic routing program would also be capable of detecting and
managing any special factors that might affect transaction routing.

One factor that can affect the otherwise free choice of target region is the use of
particular CICS programming techniques that transactions use to pass data from
one to another.

Transaction affinities

CICS transactions use many different techniques to pass data from one to another.
Some techniques require that the transactions exchanging data must execute in the
same CICS region, and therefore impose restrictions on the dynamic routing of
transactions. If transactions exchange data in ways that impose such restrictions,
there is said to be an affinity between them.

There are two categories of affinity:

v Inter-transaction affinity; see “Inter-transaction affinity” on page 4

v Transaction-system affinity; see “Transaction-system affinity” on page 4

The restrictions on dynamic routing caused by transaction affinities depend on the
duration and scope of the affinities. Clearly, the ideal situation for a dynamic routing
program is for there to be no transaction affinity at all, which means there is no
restriction in the choice of available target regions for dynamic routing. However,
even when transaction affinities do exist, there are limits to the scope of these
affinities determined by the:

v Affinity relations; see “Affinity relations” on page 4

v Affinity lifetime; see “Affinity lifetimes” on page 5

Chapter 1. Introducing transaction affinities 3

|
|
|
|
|
|

|
|

|

|

Note that, if you are dynamically routing non-terminal-related START and DPL
requests, you should review your application to determine whether or not the
application is suitable for dynamic routing. The Transaction Affinities Utility cannot
detect affinities in these circumstances.

Inter-transaction affinity

Inter-transaction affinity is an affinity between two or more CICS transactions. It is
caused by the transactions using techniques to pass information between one
another, or to synchronize activity between one another, in a way that requires the
transactions to execute in the same CICS region. Inter-transaction affinity, which
imposes restrictions on the dynamic routing of transactions, can occur in the
following circumstances:

v One transaction terminates, leaving “state data” in a place that a second
transaction can access only by running in the same CICS region as the first
transaction.

v One transaction creates data that a second transaction accesses while the first
transaction is still running. For this to work safely, the first transaction usually
waits on some event, which the second transaction posts when it has read the
data created by the first transaction. This synchronization technique requires that
both transactions are routed to the same CICS region.

Transaction-system affinity

Transaction-system affinity is an affinity between a transaction and a particular
CICS region (that is, it is not an affinity between transactions themselves). It is
caused by the transaction interrogating or changing the properties of that CICS
region.

Transactions with affinity to a particular system, rather than to another transaction,
are not eligible for dynamic transaction routing. In general, they are transactions
that use INQUIRE and SET commands or, depend on global user exit programs.

Affinity relations

The affinity relation determines how the dynamic routing program selects a target
region for a transaction instance associated with the affinity. An affinity relation can
be classified as one of the following:

Global
A group of transactions where all instances of all transactions in the group
that are initiated from any terminal must execute in the same target region
for the lifetime of the affinity. The affinity lifetime for global relations can be
system or permanent.

BAPPL
All instances of all transactions in the group are associated with the same
CICS BTS (Business Transaction Services) process. There may be many
different userids and terminals associated with the transactions included in
this affinity group.

LUname
A group of transactions where all instances of all transactions in the group
that are initiated from the same terminal must execute in the same target
region for the lifetime of the affinity. The affinity lifetime for LUname
relations can be pseudoconversation, logon, system, or permanent.

4 CICS Transaction Affinities Utility Guide

|
|
|
|

|
|

|

|
|
|
|
|

Userid
A group of transactions where all instances of the transactions that are
initiated from a terminal and executed on behalf of the same userid must
execute in the same target region for the lifetime of the affinity. The affinity
lifetime for userid relations can be pseudoconversation, signon, system, or
permanent.

Affinity lifetimes

The affinity lifetime determines when the affinity is ended.An affinity lifetime can be
classified as one of:

System
The affinity lasts for as long as the target region exists, and ends whenever
the target region terminates (at a normal, immediate, or abnormal
termination). (The resource shared by transactions that take part in the
affinity is not recoverable across CICS restarts.)

Permanent
The affinity extends across all CICS restarts. (The resource shared by
transactions that take part in the affinity is recoverable across CICS
restarts.) This is the most restrictive of all the inter-transaction affinities.

Process
The affinity exists until the process completes.

Activity
The affinity exists until the activity completes.

Pseudoconversation
The (LUname or userid) affinity lasts for the whole pseudoconversation, and
ends when the pseudoconversation ends at the terminal.

Logon
The (LUname) affinity lasts for as long as the terminal remains logged on to
CICS, and ends when the terminal logs off.

Signon
The (userid) affinity lasts for as long as the user is signed on, and ends
when the user signs off.

Notes:

1. For userid affinities, the pseudoconversation and signon lifetimes are possible
only in those situations where one user per userid is permitted. Such lifetimes
are meaningless if multiple users are permitted to be signed on with the same
userid at the same time (at different terminals).

2. If an affinity is both userid and LUname (that is, all instances of all transactions
in the group were initiated from the same terminal and by the same userid),
LUname takes precedence.

CICS programming techniques for transaction affinity

Associated with transaction affinity, there are three broad categories of CICS
programming techniques:

v Safe programming techniques

v Unsafe programming techniques

v Suspect programming techniques

Chapter 1. Introducing transaction affinities 5

|

|

|

|
|

|
|

Safe programming techniques

The programming techniques in the safe category are the use of:

v The communication area (COMMAREA) on CICS RETURN commands

v A terminal control table user area (TCTUA) optionally available for each terminal
defined to CICS

v ENQMODEL definitions to give sysplex-wide scope to ENQs and DEQs

Unsafe programming techniques

The programming techniques in the unsafe category are the use of:

v Long-life shared storage:

– The common work area (CWA)

– GETMAIN SHARED storage

– Storage obtained via a LOAD PROGRAM HOLD

v Task-lifetime local storage shared by synchronized tasks

v Synchronization or serialization of tasks using CICS commands:

– WAIT EVENT / WAIT EXTERNAL / WAITCICS commands

– ENQ and DEQ commands that do not specify a length parameter and
therefore ENQ by address

– ENQ and DEQ commands that do specify a length and therefore ENQ by
name, unless you have used ENQMODEL definitions to give sysplex-wide
scope to the ENQs (and DEQs)

Suspect programming techniques

Some programming techniques may create affinity, depending on exactly how they
are implemented. A good example is the use of temporary storage. Application
programs using techniques in this category must be checked to determine whether
they will work without restrictions in a dynamic routingenvironment.

The programming techniques in the suspect category are the use of:

v Temporary storage queues with restrictive naming conventions

v Transient data queues and trigger levels

v Synchronization or serialization of tasks using CICS commands:

– RETRIEVE WAIT / START

– START / CANCEL REQID

– DELAY / CANCEL REQID

– POST / CANCEL REQID

v INQUIRE and SET commands and global user exits

Avoiding the effects of transaction affinity

In a dynamic routing environment, your dynamic routing program must take account
of transaction affinity in order to route transactions effectively. Where possible, you
should avoid creating application programs that cause affinity. However, where
existing applications are concerned, it is important that you determine whether they
are affected by transaction affinity before using them in a dynamic routing
environment. The Transaction Affinities Utility is designed to help you with this task.

6 CICS Transaction Affinities Utility Guide

|

|
|

|
|
|

|

|

|

|
|
|
|
|
|

Protecting applications from one another

The transaction isolation function offers storage protection between application
programs, ensuring that one application does not accidentally overwrite the storage
of another.

Transaction isolation ensures that user-key programs1 execute in their own
subspace, with appropriate access to any shared storage, or to CICS storage. Thus
a user transaction is limited to its own view of the address space. In general,
transaction isolation ensures that each user-key program is allocated a separate
(unique) subspace, with appropriate access to any shared storage or to CICS
storage. They do not have any access to the user-key task-lifetime storage of other
tasks. Existing applications should run unmodified provided they conform to
transaction isolation requirements. However, a minority of applications may need
special definition if they:

v Issue MVS macros directly

v Modify CICS control blocks

v Have a legitimate need for one task to access or share another task’s storage

Some existing transactions may share task-lifetime storage in various ways, which
may prevent them running isolated from each other. To allow such transactions to
continue running without requiring that they run in the base space (where they
could corrupt CICS data or programs), a single common subspace is provided in
which all such transactions can run. They are then isolated from the other
transactions in the system that are running in their own subspaces, but are able to
share each other’s data within the common subspace.

You may have some transactions whose application programs access each other’s
storage in a valid way. One such case is when a task waits on one or more event
control blocks (ECBs) that are later posted, by another task, either an MVS POST
or ‘hand posting’. For example, a task can pass the address of a piece of its own
storage to another task (via a temporary storage queue or some other method) and
then WAIT for the other task to post an ECB to say that it has updated the storage.
Clearly, if the original task is executing in a unique subspace, the posting task will
fail when attempting the update and hence fail to post the ECB, unless the posting
task is executing in CICS key. CICS therefore checks when a WAIT is issued that
the ECB is in shared storage, and raises an INVREQ condition if it is not.

Storage for the timer-event control area on WAIT EVENT, and storage for event
control blocks (ECBs) specified on WAIT EXTERNAL and WAITCICS commands,
must reside in shared storage.2

You can use the Transaction Affinities Utility to identify those transactions whose
programs issue WAIT EVENT, WAIT EXTERNAL, or WAITCICS commands, or MVS
POST macros.

1. User key defines both the storage and execution key for user application programs.

2. Shared storage is allocated from one of the user-key shared dynamic storage areas, below or above the 16MB boundary (SDSA or
ESDSA).

Chapter 1. Introducing transaction affinities 7

What next?
This chapter has briefly summarized the techniques and commands that can
cause transaction affinity. “Chapter 2. Introducing the Transaction Affinities
Utility” on page 9 gives an overview of the Transaction Affinities Utility, and
details of all the commands and command sequences that the Transaction
Affinities Utility looks for.

8 CICS Transaction Affinities Utility Guide

Chapter 2. Introducing the Transaction Affinities Utility

This chapter gives an overview of the Transaction Affinities Utility, and describes the
basic components:

v “Commands detected by the Transaction Affinities Utility” on page 11

v “The Scanner component” on page 12

v “The Detector component” on page 12

v “The Reporter component” on page 18

v “The Builder component” on page 18

The Transaction Affinities Utility is designed to detect potential causes of
inter-transaction affinity and transaction-system affinity for those users planning to
use the CICS dynamic routing facility. It can be used to detect programs using
EXEC CICS commands that may cause transaction affinity. It can also be used to
create a file containing combined affinity transaction group definitions, suitable for
input to the CICS system management product, the CICSPlex SM element of CICS
Transaction Server for OS/390 Release 3.

The commands that can be detected are listed in “Commands detected by the
Transaction Affinities Utility” on page 11. The Transaction Affinities Utility is also of
value for those users planning to use either asynchronous processing by CICS
function shipping, or the transaction isolation facility.

The Transaction Affinities Utility determines the affinities that apply to a single CICS
region: that is, a single pure target region or single combined routing region/target
region. It can be run against production CICS regions, and is also useful in a test
environment, to detect possible affinities introduced by new or changed application
suites or packages.

Important note
The Transaction Affinities Utility is only an aid to help you find any affinities in
your applications. Relate the output from the Transaction Affinities Utility to the
applications that contain affinities before deciding whether or not the
applications are suitable for CICS dynamic routing.

To ensure that you detect as many potential affinities as possible, use the
Transaction Affinities Utility against all parts of your workload, including
rarely-used transactions and abnormal situations.

© Copyright IBM Corp. 1994, 1999 9

|
|
|
|
|
|
|

|
|

Figure 2 shows the affinity utility program. Each of the four components is described
in more detail in the rest of this chapter.

Report

Report

Scanner Detector

ReporterBuilder

User

AOR or TOR/AOR

Collected

Affinity

Data

Combined Affinity

Transaction Groups

Basic Affinity

Transaction Groups

Application

Load Library

To CICSPlex SM

1. 2.

3.4.

Figure 2. Affinity utility program components

10 CICS Transaction Affinities Utility Guide

Commands detected by the Transaction Affinities Utility

You can use the Transaction Affinities Utility to detect instances of the EXEC CICS
commands listed in Table 1.

Table 1. Commands detected by the Transaction Affinities Utility

Inter-transaction affinity commands Transaction-system affinity commands

ENQ
DEQ
READQ TS
WRITEQ TS
DELETEQ TS
ADDRESS CWA
LOAD
RELEASE
GETMAIN SHARED
FREEMAIN
RETRIEVE WAIT
DELAY
POST
START
CANCEL
COLLECT STATISTICS

ENABLE PROGRAM
DISABLE PROGRAM
EXTRACT EXIT
INQUIRE
SET
PERFORM
RESYNC
DISCARD
CREATE
WAIT EXTERNAL
WAIT EVENT
WAITCICS
CBTS STARTBROWSE
CBTS GETNEXT
CBTS ENDBROWSE

Notes:

1. The Scanner may detect some instances of these commands that do not cause
an affinity. For example, all FREEMAIN commands are detected but only those
used to free GETMAIN SHARED storage may cause affinity.

2. The Scanner also detects MVS POST SVC calls and MVS POST
LINKAGE=SYSTEM non-SVC calls, because of their tie-up with the various
EXEC CICS WAIT commands.

3. The Transaction Affinities Utility does not search for transient data and file
control EXEC CICS commands. They are assumed not to cause affinity
because you can define transient data and file control resources as remote (in
which case the request is function-shipped, causing no affinity problem).

4. The Detector ignores commands that target remote resources and are function
shipped, because by function shipping the command there is no affinity problem.

5. The Scanner and Detector do not search for commands issued by any program
named CAUxxxxx or DFHxxxxx, because CICS programs are not considered
part of the workload. Also, the Detector does not search for commands issued
from:

v DB2® and DBCTL task-related user exits

v User-replaceable modules

6. There are other ways in which transactions can cause affinity with each other,
but they are not readily detectable by the affinity utility program because they do
not take place via the EXEC CICS API.

7. The Detector lists WAIT commands as transaction-system affinities because
only half of the affinity can be detected. (The Detector does not detect MVS
POST calls or the hand posting of ECBs.)

8. The Detector and the Report ignore ENQ and DEQ commands that specify an
ENQSCOPE name.

Chapter 2. Introducing the Transaction Affinities Utility 11

|
|

The Scanner component

The Scanner is a batch utility that scans a load module library to detect those
programs in the library that issue EXEC CICS commands that may cause
transaction affinity. It examines the individual object programs looking for patterns
matching the argument zero 3 format for the commands in question.

The Scanner detects the use of the EXEC CICS commands listed in Table 1 on
page 11, and MVS POST requests.

The report produced by the Scanner indicates only that potential affinity problems
may exist because it only identifies the programs that issue the commands. It
cannot obtain dynamic information about the transactions using the programs, or
the names of the resources acted upon. Use the report in conjunction with the main
report produced by the Reporter (see “The Reporter component” on page 18).

Notes:

1. The Scanner operation is independent of the language the scanned program
was written in and the release of CICS the scanned program was translated
under.

2. The Scanner may indicate an affinity problem that does not really exist, because
the bit pattern found accidentally matches the argument zero format for an
affinity command.

3. The Scanner does not detect CICS macro-level commands.

4. The Scanner distinguishes between ENQ by name and ENQ by address based
on the presence of a length parameter on the EXEC CICS ENQ command. It
does the same for DEQs. The reports show which ENQs and DEQs are by
name and which are by address.

The Detector component

You can use the Detector in real-time to detect transaction affinities in a running
CICS region, and to save details of the affinities in an MVS data space. This data is
subsequently saved to DASD. The Detector consists of:

v A control transaction, CAFF

v An autosave transaction, CAFB

v Some global user exit programs

v A task-related user exit program

This is shown in Figure 3 on page 13.

The data is collected by the global user exit programs at exit points XEIOUT,
XBADEACT, XMEOUT, and XICEXP, and a task-related user exit at task start and
task end. Between them, these exit programs intercept all the EXEC CICS
commands and other events (pseudoconversation end, terminal log off, user sign
off) that are needed to deduce the affinities and their relations and lifetimes. These
exit programs coexist with any other exit programs at the same exit points. (They
can be placed before or after other exit programs, without any of the exit programs
being affected.)

3. For an explanation of argument zero, see “Notes on terminology” on page x.

12 CICS Transaction Affinities Utility Guide

|
|
|
|

|

You are recommended to run the Detector on stable CICS regions only. Do not
apply maintenance to application programs while the Detector is running. Such
maintenance may introduce or remove affinities, thus rendering collected data
inaccurate.

What is detected

The Detector detects the EXEC CICS commands listed in Table 1 on page 11 that
can cause transaction affinity. For ENQ and DEQ commands, the Detector
distinguishes between ENQ by name and ENQ by address based on the presence
of a length parameter on the EXEC CICS ENQ command. It does the same for
DEQs. The reports show which ENQs and DEQs are by name and which are by
address.

It also detects:

v The end of pseudoconversations, by detecting when one of the transactions in
the pseudoconversation terminates without issuing an EXEC CICS RETURN
TRANSID command with a non-zero transaction identifier. If a
pseudoconversation ends, and the resource shared by transactions that take part
in the affinity still exists, the lifetime of the affinity must be greater than PCONV.

Exit
programs

User

Collected
affinity
data

Collected affinity data

Data space

CICS AOR
or

TOR/AOR

CAFB CAFF

XEIOUT TRUE XMEOUT XICEXP XBADEACT

Figure 3. Detector components

Chapter 2. Introducing the Transaction Affinities Utility 13

|
|
|
|
|

v Log offs and sign offs by intercepting messages DFHSN1200, DFHZC3462, and
DFHZC5966.

v Completion of CICS BTS activities and processes.

For more information, see “Appendix A. Details of what is detected” on page 65.

Worsening of transaction affinities relations

In some cases, the Detector may not detect enough occurrences (at least 10) of an
affinity command to be sure that the affinity is definitely with a terminal (LUNAME),
userid (USERID), or CICS BTS process (BAPPL). In such cases, the Detector
records the (worsened) affinity relation as GLOBAL instead of LUNAME or USERID.
Such relation worsening is flagged by the Detector and reported by the Reporter.

Worsening of transaction affinities lifetimes

If a pseudoconversation ends, and the resource still exists, the Detector deduces
that the lifetime is longer than PCONV, that is, one of LOGON, SIGNON, SYSTEM,
or PERMANENT.

If a log off or sign off occurs, and the resource still exists, the Detector deduces that
the lifetime is longer than LOGON or SIGNON: that is, either SYSTEM or
PERMANENT.

If a CICS BTS activity completes and the resource still exits, the lifetime is
worsened to process. If a CICS BTS process completes and the resource still exits,
the liftime is worsened to system.

In some cases, the Detector may not detect a log off or sign off, so cannot be sure
that the affinity lifetime is LOGON or SIGNON. In such cases, the Detector records
the (worsened) lifetime as SYSTEM or PERMANENT instead of LOGON or
SIGNON. For example, this occurs when the CICS region the Detector is running
on is a target region, because it is impossible in some cases to detect a log off or
sign off that occurs in a connected routing region.

Such lifetime worsening is flagged by the Detector, and reported by the Reporter.

What is not detected

The Detector does not detect EXEC CICS commands when the:

v Detector is not running

v Issuing program was translated with the SYSEIB option

v Command is an EXEC CICS FEPI command

v Command is not one that can cause transaction affinity

v Program name starts with “CAU” or “DFH”

v Program is a DB2 or DBCTL task-related user exit

v Program is a CICS user-replaceable module

v Transaction identifier does not match the prefix, if specified, for transactions to be
detected

v Command is not one of the affinity types specified to be detected

v Command is function shipped to a remote CICS region

v Inter-transaction affinity commands are used within the same task

14 CICS Transaction Affinities Utility Guide

|

|
|
|

|
|

v Command is a non-terminal-related START or a DPL

v ENQ or DEQ commands that specify a resource name for which an appropriate
ENQMODEL definition is enabled, and that ENQMODEL has a non—blank
ENQSCOPE

The Detector does not detect CICS macro-level commands, MVS POST calls, or
the hand posting of ECBs.

If you continue a pseudoconversation by setting a transid in the TIOA (rather than
by using RETURN TRANSID), the Detector cannot detect PCONV lifetimes. In this
case, the shortest lifetime detected is LOGON or SIGNON because it interprets
every transaction end as a pseudoconversation end.

Ideally the Transaction Affinities Utility should ignore commands issued by
task-related user exits and global user exits because they are not part of
applications. However, it cannot distinguish such commands from others, and does
detect them. If your user exits use commands that can cause transaction affinities,
the commands are detected, perhaps making any affinity problem seem worse than
it actually is.

If an exit program at XICEREQ or XTSEREQ modifies the EXEC CICS command,
that modification is not visible to the Detector. (It detects the original, unmodified
command.) However, if an XICEREQ, XICEREQC, XEIIN, XTSEREQ, or
XTSEREQC exit program (or an XEIOUT exit program invoked earlier) modifies
EIBRESP, the Detector sees the modified value.

Controlling the Detector

You can monitor and control the Detector through the CAFF transaction, which
enables you to start, pause, continue, and stop the collection of affinity data into the
tables in the data space. Using the CAFF transaction, you can also specify for
which affinity commands, and for which transactions, data is to be collected.

The options that you specify to control the Detector for a CICS region are preserved
in a recoverable VSAM control file. For more information about this file, see “The
control record VSAM file” on page 17.

How the affinity data is collected

The Detector uses a number of affinity tables in the data space to hold collected
affinity data. The affinity tables are in three categories:

1. There is an affinity table, or set of tables, for each of the following command
groups that cause inter-transaction affinity:

v ENQ and DEQ commands

v READQ TS, WRITEQ TS, and DELETEQ TS commands

v LOAD HOLD and RELEASE commands

v RETRIEVE WAIT and START commands

v ADDRESS CWA commands

v GETMAIN SHARED and FREEMAIN commands

v LOAD and FREEMAIN commands

v CANCEL, DELAY, POST, and START commands

The tables for a particular group have a structure appropriate to that group.

Chapter 2. Introducing the Transaction Affinities Utility 15

|

|
|
|

2. There is an affinity table for each of the following command groups that cause
transaction-system affinity:

v INQUIRE, SET, ENABLE, DISABLE, EXTRACT, COLLECT STATS,
PERFORM, DISCARD, CREATE, and RESYNC commands

v CICS BTS BROWSE commands are treated as inquire commands

v WAITCICS, WAIT EVENT, and WAIT EXTERNAL commands

3. There are two affinity tables that are used as aids to searching some of the
other tables.

The affinity tables reside in the data space and are saved to the Transaction
Affinities Utility files when you stop the Detector and, optionally, at predetermined
intervals.

Saving affinity data

The affinity data collected by the Detector is saved to the Transaction Affinities
Utility VSAM files by the autosave transaction, CAFB. For more information about
these files, see “The affinity data VSAM files” on page 17.

The CAFB transaction saves affinity data automatically when you stop the Detector.
You can also specify that the CAFB transaction save affinity data as follows:

v On a predetermined time/activity basis. That is, data is saved if either more than
300 seconds has passed, or more than 1000 table elements have changed,
since the last save.

v When you pause the Detector.

Once the CAFB transaction has saved any data collected, it either becomes
dormant until next activated (while the Detector is still running or paused), or
terminates (if the Detector has been stopped).

Not all the affinity tables in the data space need to be saved, because some are
temporary or are used only as an aid to searching. Furthermore, some tables
contain temporary elements, used for recording a possible affinity. Such elements
are not saved to the files. They are either deleted when the Transaction Affinities
Utility deduces that there is actually no affinity, or are made permanent when it
deduces that there really is affinity (in which case they get saved). Also, when data
is saved, only those table elements that have been added or changed since the last
save are written to the dataset. Time stamps in each table element indicate whether
the element has been written already, and whether it has changed since the last
write. This minimizes the number of writes performed.

To improve performance, each affinity table is browsed and saved in its entirety,
before the next table is considered.

The affinity table elements are written in such an order that the data on the file is
always consistent.

Note: If CICS or the Detector abends, the affinity data may be incomplete. Where
possible, the Reporter detects this and issues a message to warn about
possible incomplete data.

16 CICS Transaction Affinities Utility Guide

|

The affinity data VSAM files

The Detector uses three non-recoverable VSAM KSDS to hold saved affinity data.
Ensure the files are big enough to hold the maximum amount of affinity data that
might be collected. Three are required because of the wide range of key lengths
that the different tables have.

KSDS files are used because the Detector and the Reporter need keyed access to
the data.

The files are not recoverable because of the large amount of data that needs to be
written. The data is written to the files in such a way that it remains consistent.

When the data contained in the tables is saved, each element in each table is a
single file record. Records are therefore of varying length. Each record has a prefix
that contains a one-byte table identifier identifying the affinity table the record
belongs to. The table identifier acts as the first part of the record key. The second
part of the key is the key of the table element itself.

Each file contains a header record. This enables both the Detector and the
Reporter to validate that the files they have been presented with are indeed data
files suitable for the Transaction Affinities Utility. The header record has a key in the
same format as the rest of the keys on the file, so a table identifier of zero is used
(no real table will have a table identifier of zero). The header record contains the
CICS specific applid, thus allowing files to be cross-validated.

The control record VSAM file

The Transaction Affinities Utility control file is a recoverable VSAM KSDS file that
holds a single control record. This record is used to preserve the Detector options
and statistics, so that information is retained across Detector runs, transaction
failures, and system failures and restarts. The record is created when the Detector
transaction is first run on the CICS region, and is never deleted.

The control record holds the following information:

v CAFF options

v Detector statistics

v History information

– Reason why STOPPED

– Userid if STOPPED by user

– Abend code if STOPPED by abend

– Userid for last Detector options update

– Date and time of last Detector options update

– Specific applid of CICS system

The record is updated whenever any of the above information changes. This will
happen when the Detector options change, the Detector statistics change, or the
Detector state changes to STOPPED.

Note: The supplied definition for the control record VSAM file makes it recoverable
to CICS. You can change the definition if you do not require recovery. See
“Defining the VSAM files to CICS” on page 22 for more information.

Chapter 2. Introducing the Transaction Affinities Utility 17

Detector performance

The Detector is intended to be run against production CICS regions. However, over
the period when the Detector is running, the CICS region suffers a performance
degradation (dependent on the workload and number of affinities) equivalent to the
performance impact of vendor monitor products that use the same user exits. The
Detector is intended to be used over limited periods. To further limit the impact of
running the Detector during periods of particularly heavy workloads, you can pause
or stop the collection of data, or select specific commands or transactions to search
for.

If your naming convention for TS queues uses a unique counter as part of the
name, the Detector performance is likely to be worse than described above. This is
because if every TS queue created has a unique name, the Detector creates a very
large number of affinity records, which adversely affects performance.

The most likely reason for poor performance is the detection of TS commands. You
may prefer to run the Detector twice, once for TS commands and once for all other
affinity commands.

The Reporter component

The Reporter is a batch utility that you can use to convert the affinity data collected
by the Detector into two output formats:

v A report presenting the affinity data in a readable form

This is intended for use by system programmers and application designers, and
indicates the transactions and programs issuing the EXEC CICS commands that
cause inter-transaction and transaction-system affinities. This information should
help you understand the transactions making up the workload, and should
highlight the changes you need to make to remove unwanted affinities.

v A file containing a set of basic affinity transaction group definitions in a
syntax approximating to the batch API of CICSPlex SM

This is intended as input to the Builder, which can merge these basic groups into
the combined groups suitable for input to CICSPlex SM.

The input to the Reporter is the three files of affinity data from a single CICS region.
The output from the Reporter therefore describes the affinities detected in a single
CICS region.

Note: The output produced may not contain all the transaction affinities in the CICS
region concerned, because some affinities may not have been found by the
Detector. You may have to supplement the basic affinity transaction groups
with information from the Scanner report, or from your own knowledge of
your transactions, before using the file as input to the Builder.

The Builder component

The Builder is a batch utility that you can run against a set of files containing the
basic affinity transaction group definitions as created by the Reporter. The Builder
produces a file containing combined affinity transaction group definitions suitable for
input to CICSPlex SM.

18 CICS Transaction Affinities Utility Guide

The basic groups are combined because of a CICSPlex SM rule stating that a
given tranid may appear only in a single transaction group. It is quite possible that a
tranid may appear in more than one basic group, and so these must be combined
to form larger groups that satisfy CICSPlex SM.

Chapter 2. Introducing the Transaction Affinities Utility 19

20 CICS Transaction Affinities Utility Guide

Chapter 3. Preparing to use the affinity utility program

This chapter describes what needs to be done before you can use the affinity utility
program.

v “Creating the VSAM files”

v “Estimating the size of the MVS data space and VSAM files”

v “Defining the VSAM files to CICS” on page 22

v “Tailoring your CICS startup job” on page 23

v “Restarting your CICS region” on page 23

Creating the VSAM files

The Transaction Affinities Utility uses one copy of each of the following VSAM files
for each CICS region it is run against:

Table 2. Transaction Affinities Utility VSAM files and associated jobs

File Description Job

CICSAFF.CAUCNTL A recoverable file used to hold control
information

CAUJCLCC

CICSAFF.CAUAFF1
CICSAFF.CAUAFF2
CICSAFF.CAUAFF3

Non-recoverable files used to hold affinity data
with different key sizes (17, 33, and 225
respectively)

CAUJCLCA

To create a set of these files for one CICS region, edit and run a copy of the
associated jobs in the CICSTS13.CICS.SDFHINST library. Edit and run a copy of
the CAUJCLCC and CAUJCLCA jobs for each CICS region against which you are
going to use the Transaction Affinities Utility.

Before you run the CAUJCLCC and CAUJCLCA jobs, change the following
parameters in the jobs:

v The JOB accounting parameters.

v The prefix of the files (&AFFQ), this should contain a CICS region qualifier.

v The volume id (&DSVOL) of the DASD device where the files are to reside.

Estimating the size of the MVS data space and VSAM files

An MVS data space is used to hold the affinity data collected by the Detector. The
amount of storage required depends on the number of affinities discovered, the
number of different transaction identifiers, and the number of terminals.

To estimate the amount of storage for the data space (and therefore the size of the
VSAM affinity files) that you are likely to need for the Detector, you can use the
following algorithm (with storage values in bytes):
Data space: (#transids * #termids * 250) + 5 000,000
CAUAFF1 : (#transids * #termids * 40) + 1 000,.000
CAUAFF2 : (#transids * #termids * 150) + 1 000,000
CAUAFF3 : 1 000,000

where:

© Copyright IBM Corp. 1994, 1999 21

#transids
is the number of transaction identifiers in the CICS region.

#termids
is the number of terminal identifiers in the CICS region.

Note: The amount of storage needed in the data space for the Builder is about
25% of the storage needed for the Detector.

The algorithm assumes that all affinities are represented, and that all transactions
participate in all affinities, and that all transactions run at all terminals (the worst
possible scenario). This gives a worst case figure.

For example, consider the worst case scenario of a CICS region with 500 different
transaction IDs and 1000 terminals, where all transactions issue all affinity
commands and all transactions run at all terminals.

For this scenario, the storage requirement for the Detector in the data space is:
Data space : 130 Megabytes
CAUAFF1 : 21 Megabytes
CAUAFF2 : 76 Megabytes
CAUAFF3 : 1 Megabyte

The space required for the data space is different than that required for the files
because:

v each record has a storage overhead in the data space

v certain tables are not saved to file

v key length is fixed per file, so short keys must be padded out

Notes:

1. The critical affinity type is temporary storage. The space required for all other
affinity types together should be no more than 5MB.

2. The calculations in this section assume that you do not use unique counters
when naming temporary storage queues. If you do use unique counters, the
space needed for temporary storage affinity types is much greater. For your
calculations with unique counters, replace #transids * #termids by the number
of unique queues.

Defining the VSAM files to CICS

The CICS-supplied sample group, DFH$AFFY, contains definitions for:

v three affinity data files (CAUAFF1, CAUAFF2 and CAUAFF3)

v the affinity control file, CAUNCNTL

Change some of the attributes of these resource definitions to suit your own
environment. To do this, use the CEDA transaction (or the DFHCSDUP utility) to:

1. COPY the sample group to a group of your own choosing. For example,
CEDA COPY GROUP(DFH$AFFY) TO(mygroup)

2. EXPAND group mygroup and change the following attributes appropriately:

v For each resource definition, change the prefixes of the VSAM files, as
defined by the CAUJCLCC and CAUJCLCA jobs.

v For each resource definition, ensure that the LSRPOOLID specified for each
file is capable of handling the keylength defined for the file. If it isn’t, change
it so that it is. See Table 2 on page 21 for more information.

22 CICS Transaction Affinities Utility Guide

v For file CAUCNTL only, if recovery is not required ensure that
RECOVERY(NONE) and FWDRECOVLOG(NO) are specified.

3. INSTALL group mygroup to make these definitions known to CICS.

Tailoring your CICS startup job

To enable the Transaction Affinities Utility to be run against your CICS region, take
account of the following when setting up your CICS startup job:

v The Transaction Affinities Utility sends messages to the transient data destination
CAFF. For you to see all the messages sent to CAFF, the queue must be
predefined to the transient data component. The CAFF queue is defined in the
CICS-supplied group, DFHDCTG. DFHDCTG contains definitions for all the
CICS-supplied transient data queues and is installed on cold starts as part of
DFHLIST processing. Unlike most CICS-supplied groups, DFHDCTG is unique in
that it is not locked. Therefore, you can alter the definition for CAFF using either
the DFHCSDUP utility or the CEDA transaction.

You do not have to specify the extrapartition transient data data set in your
start-up JCL, because of the introduction of dynamic allocation for such data
sets. If you want to use dynamic allocation, specify a DSName in the definition of
the queue. Alternatively, you can add a DD statement for the queue in your JCL.
For example:
//CAFF DD SYSOUT=*

The default definition in group DFHDCTG routes the messages sent to CAFF to
the SYSOUT class ’*’.

For more information about dynamic allocation and defining transient data
queues, see the CICS Resource Definition Guide.

v Set the ICVR system initialization parameter to at least 10 seconds; that is,
ICVR=10000 (or a larger value). If you do not do this, the Detector or one of your
own transactions may end prematurely with an abend code of AICA.

v Set the DSHIPINT system initialization parameter to 0. If you specify a DSHIPINT
value other than 0, the utility may not correctly observe terminal log offs or
determine affinity life times.

If the CICS region is a target region, specify 0 on the AILDELAY system initialization
parameter for all routing regions that route to it. This enables the Detector to
immediately see when a terminal logs off.

(If you specify an AILDELAY value other than 0, the Detector may miss log offs and
misinterpret affinity life times.)

Restarting your CICS region

Restart the CICS region using a CICS startup job modified for affinity utility program
support, as described in “Tailoring your CICS startup job”.

Chapter 3. Preparing to use the affinity utility program 23

|
|
|

24 CICS Transaction Affinities Utility Guide

Chapter 4. Running the Scanner

This chapter describes how to run the Scanner that scans load modules for
instances of API commands that could cause inter-transaction affinity and
transaction-system affinity.

You can run the Scanner to produce either a summary report and module list to
identify suspect modules or a detailed report of modules that contain possible
affinity-causing EXEC CICS commands or MVS POST calls.

The recommended way to use the Scanner is by:

v “Creating a summary report”

v “Creating a detailed report” on page 27

Creating a summary report

You can request a summary report from the Scanner by editing and running the job
CAUJCLLS. This job can also output a list of modules with potential transaction
affinities, for input to the CAUJCLLD job for more detailed reporting.

Before running the CAUJCLLS job, change the following as appropriate:

v The JOB accounting parameters

v The PARM statement:
PARM='$SUMMARY[,DETAILMODS]'

where:

$SUMMARY
Specifies that a summary scan (and report) is required for the entire library,
except for CICS modules, CICS tables, and those modules that cannot be
loaded (due to some error).

DETAILMODS
Specifies that the names of those modules containing at least one possible
affinity-causing EXEC CICS command or MVS POST command are to be
written to the sequential file defined by the AFFMOD DD statement. This file
may be used to restrict a subsequent detailed report, by specifying it on the
DETAIL DD statement of a detailed report run of the Scanner.

v The STEPLIB DD statement

Specify the name of the Transaction Affinities Utility load library where you have
installed the Scanner program, CAULMS.

v The INPUT DD statement

Specify the name of the load library to be scanned.

v The SYSPRINT DD statement

Specify the destination for the summary report.

© Copyright IBM Corp. 1994, 1999 25

v The AFFMOD DD statement

Specify the name of the sequential data set where the list of modules with
potential transaction affinities is to be sent. You can edit the data set to alter the
list of modules to be scanned before running the Scanner to produce a detailed
report.

v The DETAIL DD statement (dummy)

You do not need this for a summary run.

Each summary report contains:

v A separate line giving the following information about each module in the library:

– Name

– Size

– Language (if determined)

– Number of possible affinity-causing EXEC CICS commands

– Number of possible MVS POST commands

If a module seems to contain affinity-causing EXEC CICS commands, it is
flagged with the message “Possible affinity commands”. If a module seems to
contain MVS POST commands, it is flagged with the message “Possible MVS
POSTs”.

Note: The language is determined only if at least one affinity-causing EXEC
CICS command is detected, and is derived from the EXEC argument zero
4 of the first such command. Therefore, if a load module is created from
several source languages, only one language is indicated.

v The total count of:

– Modules in the library

– Modules scanned

– CICS modules and tables (not scanned)

– Modules in error (not scanned)

– Modules that possibly contain MVS POST commands

– Modules that possibly contain affinity-causing EXEC CICS commands

– Assembler modules

– C/370 modules5

– OS/VS COBOL modules

– VS COBOL II modules5

– PL/I modules5

Figure 4 on page 27 is an example of a summary report produced by the Scanner.

4. For an explanation of argument zero, see “Notes on terminology” on page x .

5. This includes programs compiled by a Language Environment®/370-enabled compiler.

26 CICS Transaction Affinities Utility Guide

Creating a detailed report

You can request a detailed report from the Scanner by editing and running the job
CAUJCLLD.

Change the following statements as appropriate:

v The PARM statement
PARM='$DETAIL[,ALL]'

$DETAIL
Specifies that a detailed scan and report is required. The extent of the scan
is defined by either the ALL parameter or the DETAIL DD statement.

ALL
Specifies that all modules in the load library are to be scanned for possible
affinity-causing EXEC CICS commands and MVS POST commands.

If ALL is omitted, only those modules listed in the file specified on the
DETAIL DD statement are to be scanned. This file would normally be from
the AFFMOD DD output of an Scanner summary report run, which you can
edit before creating a detailed report.

CICS TRANSACTION AFFINITIES UTILITY 1995/11/24 Page 1
LOAD MODULE SCANNER - SUMMARY LISTING OF CICSTEST.LOAD
Module Module Module Affinity MVS POSTs Comment
Name Length Language Statements
-------- -------- --------- ---------- --------- ------------------------ --------------------
ACSA1 00000198 ASSEMBLER 3 0 Possible affinity commands.
AFFYIC 00000308 0 0
AFFYTS 00000628 0 0
COBACSA 000008B8 COBOL II 4 0 Possible affinity commands.
CRMRPROG 000001A0 0 0
DFHSRT1$ CICS TABLE 0 0
DFHTCTSH CICS TABLE 0 0
DFHTSTEC CICS TABLE 0 0
PLIACSA 000003C8 PL/I 3 0 Possible affinity commands.
PLTCCC 00000D48 C/370 2 0 Possible affinity commands.
PLTCOB 000009D8 COBOL II 2 0 Possible affinity commands.
PLTPLI 00000570 PL/I 1 0 Possible affinity commands.
SCRATCH 000006D0 0 0
TRANOUT 000008B8 0 1 Possible MVS POSTs.
CICS TRANSACTION AFFINITIES UTILITY 1995/11/24 Page 2
LOAD MODULE SCANNER - SUMMARY LISTING OF CICSTEST.LOAD

LOAD LIBRARY STATISTICS
==
Total modules in library = 14
Total modules scanned = 11
Total CICS modules/tables (not scanned) = 3
Total modules in error (not scanned) = 0
Total modules containing possible MVS POSTs = 1
Total modules containing possible Affinity commands = 6

Total ASSEMBLER modules = 1
Total C/370 modules = 1
Total COBOL modules = 0
Total COBOL II modules = 2
Total PL/I modules = 2

Figure 4. Example of a summary report produced by the Scanner

Chapter 4. Running the Scanner 27

v The STEPLIB DD statement

Specify the name of the Transaction Affinities Utility load library in which you
have installed the Scanner program, CAULMS.

v The INPUT DD statement

Specify the name of the load library to be scanned.

v The SYSPRINT DD statement

Specify the destination for the detailed report.

v The AFFMOD DD dummy statement

You do not need this for a detailed run.

v The DETAIL DD statement

Specify the name of the data set containing the list of modules to be scanned.
This list may be created initially as the output from a summary run of the
Scanner. If you specify ALL on the PARM statement, change the DETAIL DD
statement to specify //DETAIL DD DUMMY.

Contents of a detailed report

Each detailed report contains a section for each module, with:

v A header line giving the name, size, and entry point of the module

v A line for each possible affinity-causing command found, giving:

– The offset of the command argument zero declaration from the start of the
load module.

Note: This offset is not the same as the offset given by the Reporter; the
offset given by the Reporter is for the command itself. (See page 45
and page 71.)

– The contents of the command argument zero declaration (in hexadecimal).

– The EDF DEBUG line number, if present. This can provide a useful clue for
identifying false affinities. If a section of a load module was translated with the
DEBUG option, EDF DEBUG line numbers are given. For such a module, if
no DEBUG line number is given, this may indicate that what was found was
not an argument zero.

– What the command appears to be (for example, WRITEQ TS).

– Whether the affinity is inter-transaction (Trans), or transaction-system
(System).

v A line for each possible MVS POST command found, giving:

– The offset of the MVS POST command from the start of the load module

– The MVS POST instruction

– The 12 bytes of storage immediately before, and the 10 bytes after, the MVS
POST command

– Whether the MVS POST is SVC or otherwise

28 CICS Transaction Affinities Utility Guide

v A summary report of the modules, giving:

– The total possible affinity commands

– The total possible MVS post commands

v Library totals, as for the summary report, but for only those modules selected for
the detailed run.

Figure 5 is an example of a detailed report produced by the Scanner.

CICS TRANSACTION AFFINITIES UTILITY 1995/11/24 Page 1
LOAD MODULE SCANNER - DETAILED LISTING OF CICSTEST.LOAD
Module Name - ACSA1 / Load Module Length - 00000198 / Module Entry Point - 00000028
Offset Storage Content (HEX) EDF DEBUG Possible Command Affinity
-------- -- --------- ---------------------- --------
00000360 0A02E0004900004900 00000022 WRITEQ TS Trans
00000400 0A04E8004900008902 00000028 READQ TS Trans
00000482 0A06E8004900002102 00000036 DELETEQ TS Trans
Total possible Affinity commands = 3
Total possible MVS POSTs = 0
Module Name - TRANOUT / Load Module Length - 000008B8 / Module Entry Point - 00000028
Offset Storage Content (HEX) EDF DEBUG Possible Command Affinity
-------- --- --------- ----------------------- --------
00000534 4100411031341B00411010000A021B0041104000A021B00 MVS POST (SVC) System
Total possible Affinity commands = 0
Total possible MVS POSTs = 1
CICS TRANSACTION AFFINITIES UTILITY 1995/11/24 Page 2
LOAD MODULE SCANNER - DETAILED LISTING OF CICSTEST.LOAD

LOAD LIBRARY STATISTICS
==
Total modules in library = 2
Total modules scanned = 2
Total CICS modules/tables (not scanned) = 0
Total modules in error (not scanned) = 0
Total modules containing possible MVS POSTs = 1
Total modules containing possible Affinity commands = 1

Total ASSEMBLER modules = 1
Total C/370 modules = 0
Total COBOL modules = 0
Total COBOL II modules = 0
Total PL/I modules = 0

Figure 5. Example of a detailed report produced by the Scanner

Chapter 4. Running the Scanner 29

30 CICS Transaction Affinities Utility Guide

Chapter 5. Running the Detector

This chapter describes how to run the Detector that runs in a CICS region looking
for instances of API commands that could cause transaction affinity.

This chapter describes how to perform the following functions:

v “Displaying the Detector control screen” on page 32

v “Starting the collection of affinity data” on page 33

v “Pausing the collection of affinity data” on page 34

v “Resuming the collection of affinity data” on page 34

v “Stopping the collection of affinity data” on page 35

v “Changing the Detector options” on page 36

v “Detector errors” on page 39

The commands looked for are those listed in “Commands detected by the
Transaction Affinities Utility” on page 11.

You can run the Detector either at a CICS 3270-type terminal (through interactive
screens or single-line commands), from a console, or from an application program.
This chapter primarily describes how to use the Detector through the interactive
screens at a CICS terminal, but also gives equivalent commands to use at a
terminal, at a console, or in an application program.

For an overview of the Detector, see “The Detector component” on page 12.

You can control the Detector by:

v Changing the state

This is described in topics “Starting the collection of affinity data” on page 33
through “Stopping the collection of affinity data” on page 35.

v Changing the options

The options that you can select are shown in Figure 7 on page 36, and described
in “Changing the Detector options” on page 36.

You can optimize the performance of the Detector; that is, you should consider
doing the following:

v Pausing the collection of data during peak workloads. You can continue the
collection of data when the workloads have decreased.

v Collecting data for one affinity type at a time. This can be of particular value for
the temporary storage affinity type.

v Collecting data for a restricted set of transaction identifiers by specifying the
prefix of those transactions in which you are interested.

For information about how to specify the affinity types and transaction identifier
prefix for which data is to be collected, see “Changing the Detector options” on
page 36.

© Copyright IBM Corp. 1994, 1999 31

Displaying the Detector control screen

To display the control screen that you can use to run the Detector at a CICS
terminal, first type the transaction identifier CAFF, then press Enter. In response, the
Detector control screen, CAFF01 (shown in Figure 6), is displayed. You can use this
screen to review and change the state of the Detector, or to display the Detector
options screen, CAFF02 (shown in Figure 7 on page 36).

To refresh the values displayed on the screen at any time, press Enter.

To leave the Detector control screen, press the F3 (or F12) function key. This does
not affect the state of the Detector.

The Detector control screen, CAFF01, shows the following:

�1� The functions that you can select from this state of the Detector. For any state
of the Detector, only appropriate functions are displayed.

�2� The current state of the Detector. If the state is STOPPED, the display shows
the reason why it was stopped.

Notes:

1. When you stop the Detector, the CAFF state changes to STOPPED only after
the Detector has saved the affinity data.

2. When you pause the Detector, the CAFF state changes to PAUSED before the
Detector saves the affinity data (to ensure that the Detector pauses
immediately). After the state has changed to PAUSED, you can refresh the data
displayed by pressing Enter.

�3� The number of times that the Detector has been paused, and the number of
times data has been saved, since the last time that it was started.

�4� The number of new records and updates to existing records written to the
affinity data VSAM files when data was last saved.

CAFF01 CICS Transaction Affinities Utility Applid CICSPDN1
Press Start key (F5) to start detection. �1�
Press Options key (F4) to modify the CAFF operation options.
Press Enter to update statistics.
CAFF state : STOPPED by user <userid> �2�
Number of pauses : 0 �3�
Number of saves. : 6 �3�
Records written last save. : 257 �4�
Total records on file. . . : 834 �5�
Date/time of last start. . : 11/24/95 09:05:23 (MM/DD/YY HH:MM:SS) �6�
Date/time of last save . . : 11/24/95 11:13:12 (MM/DD/YY HH:MM:SS)
Date/time of last change . : 11/24/95 11:12:34 (MM/DD/YY HH:MM:SS)
Total time RUNNING : 0002:08:12 (HHHH:MM:SS) �7�
Total time PAUSED. : 0000:00:00 (HHHH:MM:SS)
Table dataspace name . . . : % full �8�
�9�
F1=Help F3=Exit F4=Options F5=Start F6=Stop F7=Pause F8=Continue F12=Cancel �10�

Figure 6. Detector control screen, CAFF01

32 CICS Transaction Affinities Utility Guide

|
|

�5� The total number of affinity records in the affinity data VSAM files. If the
Detector was stopped by CICS crashing, and was in the middle of saving affinity
data, this figure may be inaccurate. However, the figure is corrected the next time
the Detector is started.

�6� The date and time when the Detector was last started, data was saved, and a
change was made to an affinity table. The date is given in the format specified by
the DATFORM system initialization parameter.

�7� The total time that the Detector has been in the running and paused states
since it was last started.

�8� The name, and current percentage occupied, of the MVS dataspace being
used. (This is not displayed while in STOPPED state.)

�9� The message line used to display diagnostic messages.

�10� The keys that you can use to select functions to affect the operation of the
Detector, or to get help information about it. This line displays all possible functions,
not all of which are appropriate (or selectable) for a given state of the Detector.

Starting the collection of affinity data

When you can start collecting affinity data
You can start collecting affinity data only when the Detector is currently
stopped.

To start collecting affinity data, use one of the methods shown in Table 3.

Table 3. Methods for starting data collection by the Detector

Where used Command or function key

Control display, CAFF01 F5 function key �1�

3270 terminal CAFF START

Console F cicsjob, CAFF START �2�

Application program EXEC CICS START TRANSID(’CAFF’) FROM(’START’) �3�

Notes:

�1� If you press the F5 function key of the CAFF01 screen, you are asked to
confirm that you want to start the recording of affinity data.

�2� cicsjob is the name of your CICS startup job.

�3� You can use this command from a program initiated during the third stage of
CICS initialization: that is, a program specified in the second part of the PLTPI list
for the CICS region. For more information about using PLTPI programs, see the
CICS Customization Guide.

Using one of the methods listed in Table 3 causes the Detector to record
transaction affinities in the CICS region, until you pause or stop data collection by
the Detector. Data is collected for only the affinity types that you have chosen to be
detected (by specifying Y for the affinity type on the CAFF02 screen).

Chapter 5. Running the Detector 33

Each time the Detector is started, a new data space is created. For help with
calculating the likely data space storage requirement, see “Estimating the size of
the MVS data space and VSAM files” on page 21. You specify this size on the
Detector options screen, CAFF02. You can also specify that data from affinity data
VSAM files (for example, from previous Transaction Affinities Utility runs) is to be
loaded into the data space when it is created. For more information about the
CAFF02 options screen, see “Changing the Detector options” on page 36.

Note: If there are a large number of data records to be loaded into the data space
when it is created (for example, from previous Transaction Affinities Utility
runs), the CAFF screen may be frozen for some appreciable time, until the
records have been loaded.

Pausing the collection of affinity data

When you can pause affinity data collection
You can pause the collection of affinity data only when the Detector is
currently running.

To pause the collection of affinity data, use one of the methods shown in Table 4.

Table 4. Methods for pausing data collection by the Detector

Where used Command or function key

Control display, CAFF01 F7 function key

3270 terminal CAFF PAUSE

Console F cicsjob, CAFF PAUSE �1�

Application program EXEC CICS START TRANSID(’CAFF’) FROM(’PAUSE’)

Note:

�1� cicsjob is the name of your CICS startup job.

Using one of the methods listed in Table 4 causes the Detector to stop collecting
data until you are ready to resume. The data already collected remains in the data
space, and can be saved to the affinity data VSAM files when the Detector is
paused. (You can specify that data be saved when the Detector is paused on the
CAFF02 options screen, as described in “Changing the Detector options” on
page 36.)

Resuming the collection of affinity data

When you can resume collecting affinity data
You can resume collecting affinity data only when the Detector is currently
paused.

To resume collecting affinity data, use one of the methods shown in Table 5 on
page 35.

34 CICS Transaction Affinities Utility Guide

Table 5. Methods for resuming data collection by the Detector

Where used Command or function key

Control display, CAFF01 F8 function key

3270 terminal CAFF CONTINUE

Console F cicsjob, CAFF CONTINUE �1�

Application program EXEC CICS START TRANSID(’CAFF’) FROM(’CONTINUE’)

Note:

�1� cicsjob is the name of your CICS startup job.

Using one of the methods listed in Table 5 causes the Detector to continue
recording any transaction affinities in the CICS region, until you pause or stop data
collection.

Stopping the collection of affinity data

When you can stop collecting affinity data
You can stop collecting affinity data only when the Detector is currently
running or paused.

To stop collecting affinity data, use one of the methods shown in Table 6.

Table 6. Methods for stopping data collection by the Detector

Where used Command or function key

Control display, CAFF01 F6 function key �1�

3270 terminal CAFF STOP

Console F cicsjob, CAFF STOP �2�

Application program EXEC CICS START TRANSID(’CAFF’) FROM(’STOP’) �3�

Notes:

�1� If you press the F6 function key of the CAFF01 screen, you are asked to
confirm that you want to stop the recording of affinity data.

�2� cicsjob is the name of your CICS startup job.

�3� You can use this command from a program initiated during the first quiesce
stage of CICS shutdown, that is, a program specified in the first half of the PLT for
CICS shutdown. This is recommended, to prevent the Detector delaying CICS
shutdown if the Detector is not in the STOPPED state. For more information about
using PLTSD programs, see the CICS Customization Guide.

Using one of the methods in Table 6 stops the Detector recording any transaction
affinities in the CICS region until you next start collecting data by the Detector. This
also destroys the data space, and saves the data collected to the affinity data
VSAM files.

Chapter 5. Running the Detector 35

Note: If there are a large number of data records to be saved, the CAFF screen
may be frozen for some appreciable time, until the records have been saved.

You may want to stop the Detector when it has detected all affinities. This is
indicated by the “Date/time of last change” field changing very infrequently and, if
the optional periodic saves are performed, the “Records written last save” field
being consistently near zero.

If CICS shuts down normally, but the Detector is not stopped, the Detector
eventually detects that CICS is not running and terminates cleanly with a save.

Changing the Detector options

You can control how the Detector operates by changing the options that it uses.
Option values are preserved in the Transaction Affinities Utility control file,
CAUCNTL, so that they can be used across separate runs of the Detector. For
more information about the control file, see “The control record VSAM file” on
page 17.

Notes:

1. Generally, any option can be changed while the Detector is stopped. However,
some options can also be changed while the Detector is paused or running.
(These options are identified in the descriptions on page 37.)

2. You can change an option even if the Detector is stopped and the Reporter is
running (that is, reading the CAUCNTL file).

To review and change the options that the Detector uses, press the F4 function key
of the Detector control screen, CAFF01. In response, the Detector displays its
options screen, CAFF02 (shown in Figure 7) is displayed.

To update the options screen, press Enter.

To return to the Detector control screen, press the F12 function key.

CAFF02 CAFF Operation Options Applid CICSPDN1
Modify the options and press Enter to update, or press Cancel (F12)
Control options �1�

Perform periodic saves Y (Y=Yes or N=No)
Restore data on start. N (Y=Yes or N=No)
Multiple signon with same userid . N (Y=Yes or N=No)
Size of dataspace. 16 (10 to 2000 MB)
Transid prefix (optional). ___ (1 to 3 characters)

Detect affinity types (Y=Yes or N=No) �2�
Inter-transaction Transaction-system Transaction-system
ENQ, DEQ Y INQUIRE, SET . . . Y WAIT Y �3�
TS Queue Y ENABLE, DISABLE. . Y DISCARD. Y
ADDRESS CWA. . . Y EXTRACT. Y CREATE Y
RETRIEVE WAIT. . Y COLLECT STATS. . . Y
LOAD Y PERFORM. Y
GETMAIN SHARED . Y RESYNC Y
CANCEL Y

Last updated by <userid> on 11/24/95 09:04:35 �4�
F1=Help �5�

F12=Cancel

Figure 7. Detector options screen

36 CICS Transaction Affinities Utility Guide

The Detector options screen, CAFF02, shows the options available to you. You can
change an option only when the Detector has stopped, unless one of the notes that
follow says otherwise.

Notes:

�1� The control options:

v Perform periodic saves

Whether or not you want the affinity data collected to be saved to the affinity data
VSAM files if either:

– More than 300 seconds has passed, or more than 1000 table elements have
changed, since the last save

– You paused the Detector

(The autosave transaction, CAFB, writes the affinity data to the affinity data
VSAM files automatically when you stop the Detector.)

Note: This option can be changed while the Detector is stopped, paused, or
running.

v Restore data on start

Whether or not you want the affinity data to be restored from the affinity data
VSAM files when the Detector is started. This enables affinity data to be added to
the data collected from previous runs of the Detector. If you are gathering data
use this:

– For one set of transaction identifiers at a time

– For one set of commands at a time

– If the Detector is being run at varying times

It is also of particular value if the Detector terminates unexpectedly, because you
do not have to start collecting affinity data all over again; you can start from the
last time data was saved.

Notes:

1. The data restored is only for those affinity types that you have chosen to be
detected (by specifying Y for the affinity type on the CAFF02 screen).

Data is kept on file for all commands, but only the data for the commands
that you have selected to be detected may change, and therefore is restored.

2. You can change this option while the Detector is stopped, paused, or running.

v Multiple signon with the same userid

Whether or not your conventions allow for more than one user to be signed on to
CICS with the same userid at the same time. If so, set the multiple signon with
same userid to Y; otherwise, the Detector may incorrectly deduce some affinity
lifetimes and create erroneous affinity transaction groups (also known as affinity
groups). This includes conventions where more than one user is simultaneously
not signed on; that is, they all take the default userid CICSUSER.

Also, if you are running the Detector in an AOR, the userids examined depend on
whether the userid is propagated from the TOR, or derived from the SESSION
and CONNECTION resource definitions. In the last case, you should set the
multiple signon option to Y if your conventions allow the same AOR userids to be
signed on to CICS at the same time.

It is very important that this option is set correctly. If you are about to start a new
run of the Detector, and intend restoring data from the affinity data VSAM files,

Chapter 5. Running the Detector 37

ensure that this option is the same as that used in the previous run of the
Detector (for which affinity data is to be restored).

v Size of dataspace

The size that you want to use for the data space to store the affinity data
collected. The size of the data space is fixed for a run of the Detector. For
information about estimating the size of the data space, see “Estimating the size
of the MVS data space and VSAM files” on page 21.

If the data space becomes full when running, the Detector terminates with abend
code AUXB.

If you are saving affinity data, there may be a delay from the time the data space
became full until the time the Detector actually terminated.

v Transid prefix

The prefix (zero through three characters) of the transactions for which you want
to gather affinity data, If you do not specify any characters, affinity data is
collected for all transactions. If you specify a valid prefix (for example, AB_),
affinity data is collected for only those transactions with identifiers starting with
the prefix.

Leading and trailing blanks are ignored, but embedded blanks are treated as an
error.

�2� Detect affinity types

Whether or not the Detector is to detect the types of affinities listed.

For more information about restrictions affecting the detection of affinity commands,
see “The Detector component” on page 12 and “Appendix A. Details of what is
detected” on page 65.

�3� Transaction system

WAIT commands are listed as transaction-system affinities, because only half the
affinity can be detected. (The other half, an MVS POST command or hand posting,
cannot be detected.) You should investigate such affinities further, and, if needed,
change the output from the Reporter to create basic affinity transaction groups for
them.

�4� Last update by <userid>

The date and time when the options were last updated, and the userid of the user
who made the updates.

The date is displayed in the format defined by the DATFORM system initialization
parameter.

�5� Help

Pressing PF1 for help does not save any changes made; you must press the Enter
key to save changes.

38 CICS Transaction Affinities Utility Guide

Detector errors

If the CAFF or CAFB transaction, or an exit program, encounters a serious error,
the Detector stops by terminating CAFF and CAFB with one of the following
termination codes:

v A code in the AUxx range accompanied by messages on the CAFF transient data
queue that indicate the cause of the error

v A code not in the AUxx range, presumably being one of the other CICS
transaction abend codes

For a description of the code, see the CICS Messages and Codes manual.

If the CAFF transaction stops with code ATCH, ATNI, or AKCT, the Detector
continues to collect affinity data. For all other codes from either the CAFF or CAFB
transaction, the Detector is stopped. The Detector should stop cleanly; so, after
performing the actions suggested by the message explanations, you should be able
to restart the Detector.

If a program check or MVS abnormal termination occurs in an exit program, it
results in an abnormal termination of the transaction that caused the exit to be
invoked. This probably indicates a problem with the Detector. Use the CAFF
transaction to stop the Detector, and contact your IBM Support Center if the
evidence points to the Detector being at fault.

If the termination code is AICA, this may be caused by the Detector scanning the
table of affinity data when the amount of affinity data is very large. You can prevent
this by increasing the value of the ICVR system initialization parameter.

Chapter 5. Running the Detector 39

40 CICS Transaction Affinities Utility Guide

Chapter 6. Running the Reporter

This chapter describes how to run the Reporter that runs as a batch job to produce
a report of the affinities found by the Detector. The commands reported on are
those listed in “Commands detected by the Transaction Affinities Utility” on page 11.
For information about interpreting the report output by the Reporter, see “Using the
affinity report” on page 47.

You can run the Reporter to produce a report of the affinities found in your CICS
region and definitions for the basic affinity transaction groups that correspond to the
report. The definitions for the basic affinity transaction groups are suitable for input
to the Builder.

This chapter contains the following information:

v “Requesting a report from the Reporter”

v “Output from the Reporter” on page 42

v “Using the affinity report” on page 47

v “Compressing affinity data” on page 49

v “Using the IBM Cross System Product” on page 50

Requesting a report from the Reporter

You can request a report from the Reporter by editing and running the job,
CAUJCLRP. Before running the CAUJCLRP job, change the following as
appropriate:

v The JOB accounting parameters

v The PARM parameter of the EXEC statement

For example:
REPORT EXEC PGM=CAUREP,PARM='WORSEN=YES'

[WORSEN={YES|NO}]
Specify whether the Reporter is to worsen transaction affinity relations for
those affinities where the Detector has not detected at least 10 occurrences.
For more information about worsened relations, see “Worsening of
transaction affinities relations” on page 14.

v The STEPLIB DD statement

Specify the name of the Transaction Affinities Utility load library where you have
installed the Reporter program, CAUREP.

v The CAUAFF1, CAUAFF2, and CAUAFF3 DD statements

Specify the names of your affinity data VSAM files for this CICS region.

Note: Each of the CAUAFF1, CAUAFF2, and CAUAFF3 files has a header
record specifying the applid of the CICS region that created the record.
The Reporter checks these applids against the applid recorded in the
CAUCNTL file, and proceeds only if all four applids are the same.

v The CAUCNTL DD statements

Specify the name of your Transaction Affinities Utility control VSAM file for this
CICS region.

© Copyright IBM Corp. 1994, 1999 41

v The CMDGRPS DD statement

Specify the affinity (command) types you want to see in the report. Only those
affinity types listed on this DD statement are shown in the report. (The types
correspond exactly to the type options on the CAFF02 screen.) You can specify
any of the following affinity types, with each type on a separate line, starting in
column one:

CANCEL ENABLE LOAD
COLLECT ENQ PERFORM
CREATE EXTRACT RESYNC
CWA GETMAIN RETRIEVE
DISCARD INQUIRE TS

If you do not specify any affinity types on the CMDGRPS DD statement, or
specify CMDGRPS DD DUMMY, all affinity types are selected for reporting.

The first part of the report lists the affinity types selected.

v The TRANGRPS DD statement

Specify the name of the sequential data set where the basic affinity transaction
groups are to be sent.

v The SYSPRINT DD statement

Specify the destination for the report.

Note: The Reporter cannot read records from the CAUAFF1, CAUAFF2, and
CAUAFF3 VSAM files while the Detector has those files opened for update.
Therefore, do not run the Reporter at the same time as the Detector.

Output from the Reporter

For each affinity type specified on the CMDGRPS DD statement, the Reporter
outputs each individual affinity both in report format and as definitions for basic
affinity transaction groups suitable for input to the Builder.

Notes:

1. The Reporter outputs basic affinity transaction group definitions for
inter-transaction affinity transaction groups only.

2. Transactions not initiated from a terminal do not appear in a basic affinity
transaction group. If none of the transactions in an inter-transaction affinity
group were initiated from a terminal, a special reporting affinity relation of
Background is used; no basic affinity transaction group is created, and you
should ignore the affinity lifetime.

42 CICS Transaction Affinities Utility Guide

|
|
|
|
|

Affinity report

Figure 8 shows an example report for two affinities, a TS queue affinity and a CWA
affinity. These were the only affinity types selected, as shown.

CICS TRANSACTION AFFINITIES UTILITY 1995/11/24 Page 1
AFFINITY TYPE REPORTING OPTIONS Applid=CICSPDN1
Affinity Type Reporting Message
------------- --------- --------------------------------------
�1�
Inter-Transaction Affinities �2�

CWA Yes
CANCEL No
ENQ No
GETMAIN No
LOAD No
RETRIEVE No
TS Yes
Transaction-System Affinities

COLLECT No
DISCARD No
ENABLE No
EXTRACT No
INQUIRE No
PERFORM No
RESYNC No
WAIT No
CREATE No

Figure 8. A sample report output by the Reporter (Part 1 of 4)

CICS TRANSACTION AFFINITIES UTILITY 1995/11/24 Page 2 �3�
INTER-TRANSACTION AFFINITIES REPORT FOR ADDRESS CWA Applid=CICSPDN1
Trangroup : CW.00000001
Affinity : GLOBAL
Lifetime : SYSTEM
Tranid Program Offset Usage Command Terminal BTS Task
------ -------- -------- ------ ----------- -------- ---------
AUXX AUXXTST 000000CC 1 ADDRESS CWA Yes Yes
CWA1 AUCWA FFFFFFFF 2 Yes No

Total Transactions : 2
Total Programs : 2

Figure 8. A sample report output by the Reporter (Part 2 of 4)

Chapter 6. Running the Reporter 43

Notes for Figure 8:

�1� Incorrect affinity types

This lists any affinity types that were specified incorrectly on the CMDGRPS DD
statement of the CAUJCLRP job.

�2� Affinity types reported

This lists any affinity types that were selected for reporting; that is, those affinity
types specified correctly on the CMDGRPS DD statement of the CAUJCLRP job.
The affinity types are listed under their associated affinity category: inter-transaction
and transaction-system.

�3� Affinities reports

For each affinity transaction group, a report lists appropriate characteristics of the
affinities, as given in the following notes.

Trangroup
The name of the affinity transaction group, assigned by the Reporter. This
name is used only to cross-reference the group to the corresponding affinity
transaction group in the data set specified on the TRANGRPS DD
statement for this run of the Reporter.

CICS TRANSACTION AFFINITIES UTILITY 1995/11/24 Page 3 �3�
INTER-TRANSACTION AFFINITIES REPORT FOR TEMPORARY STORAGE COMMANDS Applid=CICSPDN1
Trangroup : TS.00000001
Affinity : LUNAME
Lifetime : PCONV
Queue : LOCA1 (D3D6C3C1F1404040)
Recoverable : No (MAIN)
Terminal Id : V102 (E5F1F0F2)
Tranid Program Offset Command Usage Terminal BTS Task
------ -------- -------- -------- ------ -------- ---------
AFTD AFFYTSD 0000012E DELETEQ 43 Yes Yes
AFTR AFFYTSR 000002BE READQ 43 Yes No
AFTW AFFYTSW 00000260 WRITEQ 43 Yes Yes

Total Transactions : 3
Total Programs : 3

Figure 8. A sample report output by the Reporter (Part 3 of 4)

Trangroup : TS.00000002
Affinity : LUNAME
Lifetime : PCONV
Queue : LOCA2 (D3D6C3C1F2404040)
Recoverable : No (MAIN)
Terminal Id : V102 (E5F1F0F2)
Tranid Program Offset Command Usage BTS Task Terminal
------ -------- -------- -------- ------ -------- ---------
AFTD AFFYTSD 0000012E DELETEQ 39 Yes Yes
AFTR AFFYTSR 000002BE READQ 39 No Yes
AFTW AFFYTSW 00000260 WRITEQ 39 Yes Yes

Total Transactions : 3
Total Programs : 3

Figure 8. A sample report output by the Reporter (Part 4 of 4)

44 CICS Transaction Affinities Utility Guide

Note: The Trangroup value for an affinity transaction group may vary from
one run to another of the Detector or Reporter.

Affinity
The affinity relation. If appropriate, this also indicates whether the relation
was worsened from a less restrictive relation. For more information about
worsened relations, see “Worsening of transaction affinities relations” on
page 14.

Lifetime
The affinity lifetime. If appropriate, this also indicates whether the lifetime
was worsened from a less restrictive lifetime. For more information about
worsened lifetimes, see “Worsening of transaction affinities lifetimes” on
page 14.

Queue (resource)
The resource causing the affinity. This may be the name of the resource
(for example, Queue : LOCA1 (D3D6C3C1F1404040) as shown) or the address
of the resource, depending on the type of affinity.

Note: An unprintable character appears as a period (.).

Recoverable
Whether or not the resource is recoverable. For TS queues, this also
indicates whether the queue is in auxiliary or main temporary storage.

Terminal Id
The identifier of the terminal where the transactions taking part in the affinity
were initiated. This information is available only for TS queue affinity, and is
meaningful only if the affinity is LUNAME or worsened from LUNAME to
GLOBAL. Therefore, the terminal identifier is included in the report only in
these cases.

Tranid The identifier of each transaction taking part in the affinity. It is possible for
an affinity transaction group to contain only one tranid. An example of such
a situation is where each part of a pseudoconversation accesses a TS
queue, and each part runs under the same tranid.

Program
The name of each program taking part in the affinity.

Offset The offset from the load point of the BALR instruction at the EXEC CICS
command causing the affinity. The Reporter outputs a negative offset
(X'FFFFxxxx') if it could not determine an offset; that is, if the offset
calculated is not within the program. This may indicate that the program (or
perhaps language run-time code) has passed control to another program by
using a non-CICS mechanism (for example, a VS COBOL II dynamic call).

Notes:

1. This offset is not the same as the offset given by the Scanner, which is
the offset of the command argument 0 declaration from the start of the
load module. (See page 71.)

2. If a negative offset (X'FFFFxxxx') is used, it is not possible to directly
locate individual affinity commands within a program. The program must
be scanned for every instance of the affinity command, as there may be
more than one.

Command
The EXEC CICS command causing the affinity.

Chapter 6. Running the Reporter 45

Usage The number of times that this particular EXEC CICS command (with the
transaction, program, and offset values reported) taking part in the affinity,
up to a limit of 5000.

Note: The usage count is an indication of the relative importance of the
affinity, and is not a completely accurate usage count. For
performance reasons, when the usage count is incremented by the
Detector, the “save to file” flag is not necessarily set to indicate that
the record needs to be saved to the data file. The save flag is set as
follows:
0 <= usage count < 10, save flag set every increment
10 <= usage count < 100, save flag set every 10 increments
100 <= usage count < 5000, save flag set every 100 increments
5000 <= usage count, neither increment nor save flag set

If the usage count is ’1+’, it means that at least one example of the affinity
was seen but that the total number of occurrences of that affinity is
unknown.

Terminal
Whether this particular EXEC CICS command (with the transaction,
program, and offset values reported) was ever issued by a transaction
initiated from a terminal; that is, started as a result of terminal input or for
an EXEC CICS RETURN TRANSID command. (This does not include
ATI-started transactions.)

The word Mix in this column is used to indicate that a particular EXEC
CICS command was issued by a transaction initiated from a terminal and
also issued by the transaction when it was initiated with no associated
terminal.

BTS Task
Whether it is a CICS BTS task or not.

Total Transactions
The total number of different transactions in the affinity transaction group.

Total Programs
The total number of different programs in the affinity transaction group.

Producing affinity transaction group definitions

The Reporter produces affinity transaction group definitions suitable for input to the
Builder (but not to CICSPlex SM). Each definition consists of a unique transaction
group name, a relation, a lifetime, and a set of tranids.

Not everything that appears in the report appears as an affinity transaction group. In
particular, transaction-system affinities do not appear, because they are not of
interest to a dynamic routing program; nor do transactions that were not initiated
from a terminal (for the same reason).

Figure 9 on page 47 shows a sample set of definitions to match the report in
Figure 8 on page 43.

Notes:

1. The transaction group name is not a valid CICSPlex SM transaction group
name, because the latter must be eight characters; it is used only as a
cross-reference to the report.

46 CICS Transaction Affinities Utility Guide

|
|
|
|

|
|

2. MATCH or STATE attributes are not generated on CREATE TRANGRP
commands, because those attributes are relevant only to the combined affinity
transaction groups. For more information about MATCH and STATE attributes,
see page 55.

3. The HEADER statement is generated so that the Builder can detect a new data
set in its input concatenation. It also gives the CICS applid, and the date and
time of the last Detector save, all obtained from the CAUCNTL control file. For
more information about HEADER statements, see “HEADER statements” on
page 58.

Once these definitions have been created, you can edit them to add extra
definitions for affinities that the Detector could not detect, or to modify definitions in
the light of further knowledge about the affinity (for example, to correct a worsened
lifetime). The report output from the Scanner may be particularly useful at this
stage. (See “Using the affinity report”.)

Using the affinity report

The affinity report has two main purposes:

1. To help you understand the affinities present in the CICS region concerned.

2. To help you modify the affinity transaction group definitions before they are input
to the Builder, if such modification is required.

You need to be able to investigate whether any application changes could reduce
the amount of affinity.

Notes:

1. Assume that the affinity information is complete.

2. Assume that any worsening of affinity relation or affinity lifetime by the Detector
does not create too pervasive an affinity (this makes dynamic routing less
effective).

* HEADER APPLID(CICSPDN1) SAVEDATE(95/11/24) SAVETIME(10:11:45);
*
* Generated by the CICS Transaction Affinities Utility (Reporter) on 1995/11/25
* Note: NOT suitable for input to CICSPlex SM
*
CREATE TRANGRP NAME(CW.00000001) AFFINITY(GLOBAL) AFFLIFE(SYSTEM)

DESC(ADDRESS CWA);
CREATE DTRINGRP TRANGRP(CW.00000001) TRANID(AUXX);
CREATE DTRINGRP TRANGRP(CW.00000001) TRANID(CWA1);

*
CREATE TRANGRP NAME(TS.00000001) AFFINITY(LUNAME) AFFLIFE(PCONV)

DESC(TS.LOCA1 D3D6C3C1F1404040);
CREATE DTRINGRP TRANGRP(TS.00000001) TRANID(AFTD);
CREATE DTRINGRP TRANGRP(TS.00000001) TRANID(AFTR);
CREATE DTRINGRP TRANGRP(TS.00000001) TRANID(AFTW);

*
CREATE TRANGRP NAME(TS.00000002) AFFINITY(LUNAME) AFFLIFE(PCONV)

DESC(TS.LOCA2 D3D6C3C1F2404040);
CREATE DTRINGRP TRANGRP(TS.00000002) TRANID(AFTD);
CREATE DTRINGRP TRANGRP(TS.00000002) TRANID(AFTR);
CREATE DTRINGRP TRANGRP(TS.00000002) TRANID(AFTW);

Figure 9. Sample basic affinity transaction group definitions

Chapter 6. Running the Reporter 47

|
|
|

Understanding the affinities

The inter-transaction affinities listed in the report highlight those transactions that
have affinities with other transactions.

Understanding the affinities present in the CICS region enables you to determine
which of the them are most pervasive. If you decide that it is worth changing your
application programs, it is generally more cost-effective to remove the most
pervasive affinities, because those affinities most restrict dynamic routing. The most
pervasive affinities are those with a relation of GLOBAL, or a lifetime of SYSTEM or
PERMANENT, and are heavily used.

The transaction-system affinities listed in the report highlight those transactions that
use system programming commands. It may not be appropriate to dynamically
route such a transaction, because its action may be tied to a particular CICS region
(as opposed to a particular set of other transactions).

The affinity report also lists affinities occurring between transactions that were not
initiated from a terminal or are not CICS BTS transactions. These background
transactions are known as background relations . This information is really for
completeness, because such transactions cannot be dynamically routed.

To get complete information on affinities, use as many code paths as possible while
running the Detector, because it can find an affinity only if the commands that cause
it have been executed. However, the Scanner detects all instances of affinity
commands in the corresponding load library. So a comparison of the Reporter and
Scanner outputs is very useful when establishing the full picture.

Important note
Both the Reporter and Scanner may identify commands that, on closer
examination, do not cause real affinities. Relate the output from the Reporter
and the Scanner to your knowledge of your applications, to distinguish
between such commands and those causing real affinities that impact CICS
dynamic routing.

For more information about interpreting the affinity report, see “Appendix C. Useful
tips when analyzing Transaction Affinities Utility reports” on page 75.

Modifying affinity transaction groups

Consider making the following modifications to the affinity transaction groups before
inputting them to the Builder:

v Remove false affinities

False affinities may arise because the sharing of a resource is done on a
read-only basis, so it is possible for the resource to be replicated across cloned
CICS regions. The prime example of this is a read-only CWA, where the CWA is
set up at CICS startup (for example, from a PLTPI program), and only ever read
thereafter. (An alternative way of removing this false affinity is to prohibit
detection of ADDRESS CWA by the Detector using the CAFF options.)

v Remove affinity relation worsening

An affinity that has a relation of LUNAME, BAPPL,or USERID may be worsened
to GLOBAL because the Detector has not seen enough examples of the affinity

48 CICS Transaction Affinities Utility Guide

|

|

|

|

to be convinced that it is related to a terminal or userid. Change this to LUNAME
or USERID (and correct the lifetime) if you know that the affinity really is terminal-
or userid-related. You may want to prevent worsening by specifying
WORSEN=NO.

v Remove affinity lifetime worsening

An LUNAME affinity with a lifetime of LOGON, or a USERID affinity with a
lifetime of SIGNON, may be worsened to SYSTEM or PERMANENT because the
Detector cannot always observe log offs or sign offs. Change this to LOGON or
SIGNON if you know that to be the correct lifetime.

v Change LUNAME affinity relation to USERID

An LUNAME affinity group may be both LUNAME and USERID, because all
instances of all transactions in the group were initiated from the same terminal by
the same userid. This appears in the report as LUNAME, because LUNAME
takes precedence. If you know that the affinity is primarily userid-related, change
the affinity to USERID. (This may be indicated by other, similar, affinity groups
appearing in the report with USERID.)

v Add WAIT affinities

The Reporter reports the use of WAIT EVENT, WAITCICS, and WAIT
EXTERNAL commands as transaction-system affinities, because the Detector
cannot detect the corresponding posting of the ECBs being waited upon. Identify
the posting transactions and create affinity transaction groups to describe the
affinities. The output from the Scanner may be particularly useful here, because it
finds programs that issue MVS POST commands.

v Add other affinities

Scanner output or your knowledge of your applications may identify additional
affinities. Create affinity transaction groups to describe them.

v Add GETMAIN storage sharers

The Detector cannot detect transactions that share storage other than via EXEC
CICS commands. Although it detects GETMAIN SHARED/FREEMAIN affinities,
the address of the storage may have been passed to a third transaction. Add
such transactions to the affinity transaction group.

Compressing affinity data

If your temporary storage queue names contain a unique counter or a termid, a
very large number of basic affinity transaction groups may be created for what may
seem to be a small number of logical queues. For example, consider the queues
ABCD0001 through ABCD1000, whose names comprise a fixed part (ABCD) and a
counter (0001 through 1000). They may result in 1000 basic affinity transaction
groups, each with relation, LUNAME, lifetime PCONV, and transactions ABCD and
ABCE. This is one logical queue, ABCD*, which causes an affinity that may be
described by one affinity transaction group. However, the result is 1000 basic
affinity transaction groups.

The affinity data may be more readable if compressed to its logical form. You can
use the Builder to do this, because it combines all affinity transaction groups that
contain the same transaction ID. The Builder output for the previous example would
be one affinity transaction group with relation LUNAME, lifetime PCONV, and
transactions ABCD and ABCE.

Chapter 6. Running the Reporter 49

Using the IBM Cross System Product

The following information about the IBM Cross System Product (CSP) 4GL
application generator concentrates on tests carried out running CSP 3.3, but in
general the information also applies to later releases of CSP.

There are two components to CSP:

v CSP/AD (Application Development) is used to develop the applications

v CSP/AE (Application Environment) is the run-time environment for application
execution.

If you use the IBM Cross System Product to develop your applications and, in
particular, use CSP/AE as the run-time environment for the applications, the
Reporter report will contain a large number of transaction groups. These groups are
created because of the way that CSP/AE uses EXEC CICS commands, and in
many cases do not cause real affinities.

Affinity analysis for a CICS region containing CSP 3.3 applications

When CSP 3.3 is used to develop and execute CICS pseudoconversational
applications, the main CSP affinity is LUNAME/PCONV TS queue affinity, which can
be dealt with either by CICSPlex SM or by a queue-owning region (QOR). The only
other real affinity likely to be encountered is the use of non-read-only CSP shared
tables, and the scope of this affinity depends on the tables and applications
involved.

CSP internally uses these CICS resources and commands in the following ways.
They can cause transaction affinities, and these appear in the Transaction Affinities
Utility report.

ENQUEUEs/DEQUEUEs
are used to serialize the loading of CSP tables and applications from VSAM
files called ALFs (application load files). They are also used to serialize writing
messages to TD destination CSMT.

Shared storage
When a CSP application or table or map from an ALF has completed loading, it
is copied to shared storage. Note that some of these tables may be defined by
the application developer as SHARED and made resident by the CSP utility
program ALFUTIL. Such tables may be shared between applications, and may
be updated.

Temporary storage queues
CSP allows division of applications into ’segments’. This is just another name
for a pseudoconversational application. CSP uses TS to save state data
between transactions in the pseudoconversation, building the TS queue name
from the termid to ensure uniqueness.

SPI commands
are used to inquire on system attributes such as the version and release of
CICS in use, to set up and share a user exit global work area (GWA), and to
obtain file characteristics of the ALFs.

50 CICS Transaction Affinities Utility Guide

Detailed affinity analysis

Each of the above command scenarios is dealt with below. A description of how the
use of the command appears in the Transaction Affinities Utility Reporter report is
given, followed by an assessment of any affinity problem it causes. However, it
would be helpful first to expand on the structure of a CSP segmented application.

The default CICS transaction identifier that CSP provides for applications is XSPS,
although this is normally replaced by a unique transid for the application concerned.
CSP transactions are defined so that the initial program is DCBINIT or DCBRINIT,
the former for the first segment (that is, the first transaction in a
pseudoconversation), the latter for subsequent segments. These two CSP programs
ensure that the correct environment is built for the application, including loading of
programs and tables and saving and restoring of state data. DCBINIT and
DCBRINIT branch to other CSP programs, but these other programs are not known
to CICS. This means the Transaction Affinities Utility Reporter report shows
DCBINIT or DCBRINIT as the program containing the affinity command, but the
command offset is the generic x’FFFFFFFF’. In fact, the CSP program that issues
most EXEC CICS commands is DCBMODS.

It is very important to note that a single report transaction/program/offset entry can
conceal several affinity commands. Although the Transaction Affinities Utility
Detector has correctly logged, and deduced information from, all the commands, it
is only the first one encountered that is described in full in the report. So the
Transaction Affinities Utility may report DCBINIT issuing only ENQUEUEs, but in
reality DCBMODS is issuing both ENQUEUEs and DEQUEUEs. Similarly, the
Transaction Affinities Utility may report that DCBINIT is issuing only WRITEQ TS
commands, but in reality DCBMODS is issuing READQ TS and DELETEQ TS as
well. (The Transaction Affinities Utility Scanner shows that this is indeed the case
when it is run against the CSP/AE load library.)

Note that there is a unique generic offset for each different command type within an
affinity group. The generic offset is zero minus the group/function code for the
command. So, for example, ENQUEUEs appear with x’FFFFEDFC’, and
DEQUEUEs appear with x’FFFFEDFA’. This is also the case for other command
types.

ENQUEUE/DEQUEUE

There is an EQ affinity group in the report for each table or application or map that
is loaded. The resource used in each case starts with ’FZE’ and contains the name
of the load module concerned. Other resources that may appear are ’FZELOAD’
and ’FZETUTRI’. The programs involved are DCBINIT and DCBRINIT.

Upon analysis, this use of ENQUEUE/DEQUEUE does not cause affinity. Here, the
ENQUEUE/DEQUEUE is being used to serialize a browse on an ALF, so that
another CSP application in the same CICS region does not interfere with the
loading process. If multiple CICS regions were cloned, each cloned CICS region
must perform this same loading process, but this has no effect on any of the other
CICS regions. So the ENQUEUE/DEQUEUE is not CICSplex wide and does not
cause affinity. All that is required is to ensure that each CICS has access to the
ALFs. Because these are used read-only by CSP/AE, the ALFs may be shared
without resorting to the overhead of function shipping.

Chapter 6. Running the Reporter 51

There may also be an EQ affinity group in the report with a resource name of
CSMT when CSP serializes writing of information to TD destination CSMT. This
does not cause affinity because each cloned CICS has its own CSMT.

GETMAIN SHARED

There is a GM affinity group in the report for each pair of transactions that were
observed performing GETMAINs and FREEMAINs on shared storage. The
programs involved are DCBINIT and DCBRINIT.

Upon analysis, this use of GETMAIN SHARED may cause affinity. It depends on
the application. If the storage obtained is for a CSP shared table that is
updated by applications, there will be affinity . Otherwise, there should not be
affinity, because the program or table concerned is read-only and therefore
duplicate copies are loaded by each cloned CICS region in the CICSplex.

The scope of any affinity depends on the use of the shared table by the
application(s) concerned. The application developer decides this use. But it is
extremely important to note that the Transaction Affinities Utility can detect only the
transaction issuing the GETMAIN and the transaction issuing the FREEMAIN, and
not intermediate transactions sharing the storage.

Note that unmatched GETMAIN SHARED commands may also appear in the
report. This means that the Transaction Affinities Utility has seen a GETMAIN
SHARED but as yet no matching FREEMAIN. The discussion in the rest of this
section applies in this case also.

Temporary storage queues

There are temporary storage (TS) affinity groups in the report for each terminal that
participated in a pseudoconversation where the transactions involved are developed
using CSP. The TS queue names are all of the form ’EZExtttt’ where x is either A,
C, R or T, and tttt is the termid of the terminal concerned. The programs involved
are DCBINIT and DCBRINIT. The affinity group should be LUNAME/PCONV.

Upon analysis, this use of TS does cause affinity. Here, CSP is saving state data
between transactions in the pseudoconversation. But, because the TS queue
contains the termid of the terminal, the affinity must be LUNAME; that is, terminal
oriented. And because this technique is applicable only to pseudoconversational
applications, and the TS queue is deleted by CSP at the end of the
pseudoconversation, the lifetime must be PCONV. Therefore, there is
LUNAME/PCONV affinity .

This affinity may be dealt with by either defining the affinity as LUNAME/PCONV to
CICSPlex SM (which still permits good workload balancing if the
pseudoconversations are not excessively long) or, alternatively, by creating a
queue-owning region (QOR) to which all TS queue requests from all cloned CICS
regions are function shipped.

There is an interesting point to note here. Unrelated transactions may appear in the
same affinity group; that is, it looks as though different applications have shared the
same TS queue. In fact they have not; they have simply reused the TS queue
name. This occurs because the TS queue name ’EZExtttt’ is not flexible enough to
incorporate a unique application identifier. The probable result of this is that the
Transaction Affinities Utility Builder combines all transactions in all
pseudoconversational applications into a single affinity group for CICSPlex SM with

52 CICS Transaction Affinities Utility Guide

an affinity of LUNAME and a lifetime of PCONV. The presence of one group rather
than a group for each application is actually not important. When dynamic routing,
the affinity still ends when the current pseudoconversation ends, so the effect is
exactly the same.

It is useful to have applied the PTF for CSP APAR PN45100, because this adds
deletion of ’EZExtttt’ TS queues after a transaction abend.

SPI commands

There are transaction-system affinities in the report indicating that commands such
as EXTRACT EXIT and INQUIRE SYSTEM have been used. These are concerned
with establishing the correct environment for a transaction. The programs involved
are DCBINIT and DCBRINIT.

Transaction-system affinity can mean that a transaction is tied to a particular CICS,
or more likely, as in this case, that the transaction should be run on all cloned CICS
regions. Because it happens automatically there is no affinity problem. If multiple
CICS regions are cloned, each cloned CICS region must perform this processing
and will do so, but this may have no effect on any of the other CICS regions.

Chapter 6. Running the Reporter 53

54 CICS Transaction Affinities Utility Guide

Chapter 7. Running the Builder

This chapter describes how to run the Builder that runs as a batch job to build
affinity transaction groups suitable for input to the CICS system management
product, the CICSPlex SM element of CICS Transaction Server for OS/390
Release 3.

This chapter contains the following information:

v “Syntax for input to the Builder” on page 56

v “Output from the Builder” on page 58

You can run the Builder to build affinity transaction groups suitable for input to the
CICS system management product, CICSPlex SM. The Builder takes as input a set
of files containing basic affinity transaction groups, combines those groups, and
produces a file containing combined affinity transaction groups. CICSPlex SM
requires a transaction identifier be in one transaction group only, and the Builder
satisfies this by combining groups that contain the same transaction identifier.

Note: You can use the Reporter to produce files of basic transaction affinity groups
for input to the Builder. The files can be from several runs of the Detector
(for example, against a production CICS region and a test CICS region), but
must be for the same workload.

You can run the Builder by editing and running the job CAUJCLBL. Before running
the CAUJCLBL job, change the following as appropriate:

v The JOB accounting parameters

v The PARM parameter of the EXEC statement

For example:
//BUILD EXEC PGM=CAUBLD,
// PARM=('STATE=ACTIVE,MATCH=LUNAME,DSPSIZE=16',
// 'CONTEXT=CICPLEX1')

[DSPSIZE={16|number}]
Specify the size, in the range 2 through 2000 (MB), of the data space
created internally by the Builder to store the group tables.

[MATCH={LUNAME|USERID}]
Specify the filter that CICSPlex SM is to use for workload separation, and
which applies to all combined affinity groups produced by the Builder.

[STATE={ACTIVE|DORMANT}]
Specify whether the combined affinity groups are to be defined as active or
dormant to CICSPlex SM.

[CONTEXT=plexname]
Specify the name, one through eight characters, of a CICSplex. If you specify
this parameter, the Builder generates a CICSPlex SM CONTEXT statement,
which enables CICSPlex SM to associate the combined affinity transaction
groups with a particular CICSplex that it is managing. The default is to not
generate a CONTEXT statement; in which case, CICSPlex SM assumes the
local CICS-managed address space (CMAS).

For more information about defining transaction groups to CICSPlex SM, see
CICSPlex SM Managing Business Applications.

v The STEPLIB DD statement

© Copyright IBM Corp. 1994, 1999 55

|
|

Specify the name of the Transaction Affinities Utility load library where you have
installed the Builder program, CAUBLD.

v The REPGRPS DD statement

Specify the (concatenation of) names of the sequential data sets containing the
basic affinity transaction groups to be input to the Builder. The Builder reads the
lines of the input data sets, and checks them for syntax and logic errors. For
information about the valid syntax, see “Syntax for input to the Builder”.

v The AFFGRPS DD statement

Specify the name of the sequential data set where the combined affinity
transaction groups are to be sent. This data set is suitable for input to
CICSPlex SM.

v The SYSPRINT DD statement

Specify the destination for the report output by the Builder.

Syntax for input to the Builder

The syntax in the sequential data sets input to the Builder is similar (but not
identical) to that allowed by CICSPlex SM. (For more information, see CICS
Transaction Server for OS/390 Installation Guide.) The differences are given in the
following list:

1. The only statements you can supply are:

v CREATE statements for TRANGRPs and DTRINGRPs.

v REMOVE statements for TRANGRPs.

v TEXT statements and line comments. (A line comment is a line that starts
with an asterisk (*) in column 1.)

v HEADER statements for the Builder, and not for a CICSPlex SM statement.

2. Block comments delimited by ’/*’ and ’*/’ are not recognized.

3. Transaction group names of up to 11 characters are allowed. (CICSPlex SM
allows only 8 characters.)

4. A CREATE TRANGRP statement must have exactly one NAME, one
AFFINITY, and one AFFLIFE value. MATCH and STATE values are optional
and ignored (they are overridden by the values on the PARM statement or the
default). A DESC value is optional and ignored. Any other keywords are
reported as errors.

5. A CREATE DTRINGRP statement must have exactly one TRANGRP and one
TRANID value. Any other keywords are reported as errors.

6. REMOVE TRANGRP statements are optional and are ignored by the Builder.
However, if a REMOVE TRANGRP statement appears in an input data set, it
must have exactly one NAME value. Any other keywords are reported as
errors.

7. CONTEXT statements in the input data set are optional and are ignored by the
Builder. They are overridden by the CONTEXT operand of the PARM
statement (if specified) or the default.

8. A HEADER statement requires no keyword. APPLID, SAVEDATE, and
SAVETIME are all optional, and if specified their values are not validated. The
HEADER statement must end in a semi-colon and should not span lines. Each
input data set must start with a HEADER statement. (See “HEADER
statements” on page 58.)

56 CICS Transaction Affinities Utility Guide

|
|

9. If a line comment contains the characters HEADER anywhere in it, it is not
treated as a comment and is parsed like any ordinary line in case it is a
HEADER statement. Otherwise comment lines are thrown away.

10. The only valid values for AFFINITY are GLOBAL, LUNAME, USERID, and
BAPPL. NONE is not allowed.

11. Keywords and values (including surrounding brackets) must not be split across
input lines.

12. Nested brackets are not allowed within values.

13. The Builder is case sensitive. This applies to both keywords and their values
(keywords must be in upper case).

Any syntax error causes an error message to be issued. Logic errors are also
possible; for example, CREATE DTRINGRP before CREATE TRANGRP can cause
error messages to be issued.

Any such errors do not cause the Builder to terminate immediately, but normally
cause a skip to either the next keyword or the next statement, depending on the
error. The Builder terminates with return code of 8 when EOF is finally reached. An
error report lists all errors encountered. For each error, the line containing the error
is output, plus up to four preceding lines for the same statement to put the error in
context, plus the error message.

input_statement = {create_statement |
remove_statement |
header_statement |
context_statement |
comment}

create_statement = CREATE
{create_trangrp |
create_dtringrp}

;
create_trangrp = TRANGRP

NAME (trangroup)
AFFINITY ({GLOBAL|LUNAME|USERID})
AFFLIFE ({PERMANENT|SYSTEM|LOGON|SIGNON|PCONV})
[DESC (string)]
[MATCH ({LUNAME|USERID})]
[STATE ({ACTIVE|DORMANT})]

create_dtringrp = DTRINGRP
TRANGRP (trangroup)
TRANID (tranid)

remove_statement = REMOVE
TRANGRP
NAME (trangroup)
;

context_statement = CONTEXT
[plexname]
;

header_statement = HEADER
[APPLID (applid)]
[SAVEDATE (date)]
[SAVETIME (time)]
;

comment = '*'
[string |
header_statement]

Figure 10. Builder input syntax

Chapter 7. Running the Builder 57

|
|

HEADER statements

The HEADER statement is specific to the Builder, and is not a CICSPlex SM
statement. It is produced by the Reporter, and is needed by the Builder to create
unique transaction group names.

The Reporter generates temporary transaction group names (for example,
CW.00000001 and TS.00000001) while it is running, and stores these names in the
output data set for that run. However, the Builder can take several Reporter data
sets as input, and may therefore get the same transaction group name from
different input data sets (describing different affinity transaction groups).

To ensure that the transaction group names are unique, the input transaction group
names are qualified by the input data set name. To do this, when the Builder reads
a HEADER statement (the first line of an input data set), it obtains the data set
name from MVS. The HEADER statement is vital because without it the Builder
cannot detect the change from one input data set to another.

If you omit a HEADER statement, the Builder may generate error messages or add
transactions to the wrong group, and give incorrect line numbers in the error report
and an incomplete report of data sets processed.

Output from the Builder

The Builder outputs a file containing a set of definitions for combined affinity
transaction groups, and a report listing the combinations that occurred.

Combined affinity transaction group definitions

Before each definition of a combined group in the output file, the Builder adds a
commented-out REMOVE command for that group. If you already have combined
groups of the same name, check that it is appropriate to delete them before
uncommenting the REMOVE command.

The name of each combined affinity transaction group is derived from the
alphanumerically first transaction identifier in the combined group. For example, if
ABCD was first, the transaction group name would be ABCDGRP.

Note: For CICSPlex SM, the name of each combined affinity transaction group
must be unique.

For example, Figure 11 on page 59 shows the set of combined definitions that
correspond to the basic definitions in Figure 9 on page 47, assuming that a MATCH
filter of LUNAME, a STATE of ACTIVE, and a CONTEXT of CICPLEX1 was
specified on the PARM statement.

58 CICS Transaction Affinities Utility Guide

Notes:

1. The values of the SAVEDATE and SAVETIME fields in the HEADER statement
give the latest save date and save time from any of the input data sets. (See
Figure 11 (�1�) and Figure 12 on page 61.)

2. The combined transaction groups can be input again to the Builder. For
example, you may decide to:

a. Use the Reporter, then the Builder, to produce combined groups for
temporary storage affinities.

b. Use the Reporter, then the Builder, to produce combined groups for all other
affinity command types.

c. Merge the two files output by the Builder in steps 2.a and 2.b, by inputting
those files to the Builder together.

d. Input to CICSPlex SM the file output by the Builder in step 2.c.

This facility is particularly useful when dealing with the temporary storage
compression problem, described in “Compressing affinity data” on page 49.

Combining basic affinity transaction groups

When the Builder combines two basic affinity transaction groups, it assigns relations
and lifetimes to the combined group based on the relations and lifetimes derived
from the basic groups. This may cause some worsening of the relations and
lifetimes. For example, LUNAME combined with USERID gives GLOBAL. Table 7

* HEADER APPLID(BUILDER) SAVEDATE(95/11/27) SAVETIME(12:00:51); �1�
*
* Generated by the CICS Transaction Affinities Utility (Builder) on 1995/06/28
* Note: Suitable for input to CICSPlex SM
*
CONTEXT CICPLEX1;
*
* REMOVE TRANGRP NAME(AFF1GRP);
CREATE TRANGRP NAME(AFF1GRP) AFFINITY(LUNAME) AFFLIFE(SYSTEM)

MATCH(LUNAME) STATE(DORMANT);
CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF1);
CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF2);
CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF3);
CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF4);
CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF5);
CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF6);
CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF7);
CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF8);

*
* REMOVE TRANGRP NAME(AFTDGRP);
CREATE TRANGRP NAME(AFTDGRP) AFFINITY(LUNAME) AFFLIFE(PCONV)

MATCH(LUNAME) STATE(DORMANT);
CREATE DTRINGRP TRANGRP(AFTDGRP) TRANID(AFTD);
CREATE DTRINGRP TRANGRP(AFTDGRP) TRANID(AFTR);
CREATE DTRINGRP TRANGRP(AFTDGRP) TRANID(AFTW);

*
* REMOVE TRANGRP NAME(AUXXGRP);
CREATE TRANGRP NAME(AUXXGRP) AFFINITY(GLOBAL) AFFLIFE(SYSTEM)

MATCH(LUNAME) STATE(DORMANT);
CREATE DTRINGRP TRANGRP(AUXXGRP) TRANID(AUXX);
CREATE DTRINGRP TRANGRP(AUXXGRP) TRANID(CWA1);

Figure 11. Sample definitions for combined affinity transaction groups

Chapter 7. Running the Builder 59

through “Affinity relations” on page 4 show the relations and lifetimes that result
from combining basic affinity transaction groups.

To help you analyze the effect of combining basic transaction affinity groups, the
Builder produces a report that lists the combinations that occurred.

Table 7. Resultant affinity relations

Relation A Relation B Resultant relation C

GLOBAL Any relation GLOBAL

BAPPL BAPPL BAPPL

BAPPL LUNAME GLOBAL

BAPPL USERID GLOBAL

LUNAME LUNAME LUNAME

LUNAME USERID GLOBAL

USERID USERID USERID

Table 8. Resultant affinity lifetimes (LUNAME relation)

Lifetime X Lifetime Y Resultant lifetime Z

PERMANENT Any lifetime PERMANENT

SYSTEM SYSTEM SYSTEM

SYSTEM LOGON SYSTEM

SYSTEM PCONV SYSTEM

LOGON LOGON LOGON

LOGON PCONV LOGON

PCONV PCONV PCONV

Table 9. Resultant affinity lifetimes (BAPPL relation)

Lifetime X Lifetime Y Resultant lifetime Z

PERMANENT Any lifetime PERMANENT

SYSTEM Any other combination SYSTEM

PROCESS PROCESS PROCESS

PROCESS ACTIVITY SYSTEM

ACTIVITY PROCESS SYSTEM

ACTIVITY ACTIVITY ACTIVITY

Table 10. Resultant affinity lifetimes (USERID relation)

Lifetime X Lifetime Y Resultant lifetime Z

PERMANENT Any lifetime PERMANENT

SYSTEM SYSTEM SYSTEM

SYSTEM SIGNON SYSTEM

SYSTEM PCONV SYSTEM

SIGNON SIGNON SIGNON

SIGNON PCONV SIGNON

PCONV PCONV PCONV

60 CICS Transaction Affinities Utility Guide

|||

|||

|||

||

|||

|||

|||

|||

|||

|||

|||

|

Table 11. Resultant affinity lifetimes (GLOBAL relation)

Lifetime X Lifetime Y Resultant lifetime Z

PERMANENT Any lifetime PERMANENT

Any other lifetime combination SYSTEM

Data sets processed report

This report gives the names of all the input data sets (specified on the REPGRPS
DD statement) that were read. This is produced even if errors occur in the input
data sets.

Note: Only data sets that contain a HEADER statement appear in the report.

Empty transaction groups report

This report gives all basic transaction groups (trangroups) that were defined, but
contained no transactions. It is produced only if the input data sets have no errors.
An empty trangroup probably indicates that you have made a mistake. (The
Reporter cannot produce empty trangroups, so you must have created the input by
hand, and probably omitted some corresponding CREATE DTRINGRP statements.)

Group merge report

For each combined group, this report gives the constituent transactions and basic
groups that went to comprise it. (This is a kind of audit trail.) It is produced only if
there are no errors in the input data sets. It is very useful when establishing which
basic group has caused the severe worsening of an affinity lifetime. For example, in
Figure 14 on page 62, four groups were merged: three were LUNAME and PCONV,
and one was LUNAME and SYSTEM. The latter caused the lifetime worsening.

CICS TRANSACTION AFFINITIES UTILITY 1995/11/28 Page 1
BUILDER REPGRPS DATASETS PROCESSED REPORT

Dataset Name CICS Detector Last Detector Last
APPLID Save Date Save Time

-- -------- -------------- --------------
CICSPDN1.TRANGRPS.MERGE1 CICSPDN1 95/11/25 09:05:09
CICSPDN1.TRANGRPS.MERGE2 CICSPDN1 95/11/26 15:22:34
CICSPDN1.TRANGRPS.ONE CICSPDN1 95/11/27 12:00:51

Figure 12. Sample data sets processed report

CICS TRANSACTION AFFINITIES UTILITY 1995/11/28 Page 2
BUILDER EMPTY TRANGROUP DEFINITIONS

CICSPDN1.TRANGRPS.EMPTY1
G1 (GLOBAL SYSTEM) G2 (GLOBAL PERMANENT) G3 (GLOBAL SYSTEM)

CICSPDN1.TRANGRPS.EMPTY2
L2 (LUNAME PERMANENT) L3 (LUNAME LOGON) L4 (LUNAME PCONV)

Figure 13. Example empty trangroups report

Chapter 7. Running the Builder 61

Error report

This report gives the syntax or logic of any errors that were detected in the
processing of the input files. Each error is accompanied by a message. For a
description of the message, see the CICS Messages and Codes manual.

CICS TRANSACTION AFFINITIES UTILITY 1995/11/28 Page 3
BUILDER GROUP MERGE REPORT
Trangroup : AFF1GRP
Affinity : LUNAME
Lifetime : SYSTEM
Match : LUNAME
State : DORMANT

Consists of Transactions
AFF1 AFF2 AFF3 AFF4 AFF5 AFF6 AFF7 AFF8

Consists of groups merged from
CICSPDN1.TRANGRPS.MERGE1
TS.00000001 (LUNAME PCONV) TS.00000002 (LUNAME PCONV)

CICSPDN1.TRANGRPS.MERGE2
TS.00000001 (LUNAME SYSTEM) TS.00000002 (LUNAME PCONV)

Trangroup : AFTDGRP
Affinity : LUNAME
Lifetime : PCONV
Match : LUNAME
State : DORMANT

Consists of Transactions
AFTD AFTR AFTW

Consists of groups merged from
CICSPDN1.TRANGRPS.ONE
TS.00000001 (LUNAME PCONV) TS.00000002 (LUNAME PCONV)

Trangroup : AUXXGRP
Affinity : GLOBAL
Lifetime : SYSTEM
Match : LUNAME
State : DORMANT

Consists of Transactions
AUXX CWA1

Consists of groups merged from
CICSPDN1.TRANGRPS.ONE
CW.00000001 (GLOBAL SYSTEM)

Figure 14. Sample group merge report

62 CICS Transaction Affinities Utility Guide

CICS TRANSACTION AFFINITIES UTILITY 1996/02/08 Page 1
BUILDER REPGRPS ERROR REPORT
Dataset = CICSPDN1.TRANGRPS.ERR1

Line Number Statement in error
----------- --

5 CREATE TRANGRP NAME(G3) AFFINITY(GLOBAL) AFFLIFE(LOGON);
DFHAU5038 INVALID AFFLIFE for AFFINITY.

6 CREATE TRANGRP NAME(G4) AFFINITY(GLOBAL) AFFLIFE(SIGNON);
DFHAU5038 INVALID AFFLIFE for AFFINITY.

7 CREATE TRANGRP NAME(G5) AFFINITY(GLOBAL) AFFLIFE(PCONV);
DFHAU5038 INVALID AFFLIFE for AFFINITY.

Dataset = CICSPDN1.TRANGRPS.ERR2
Line Number Statement in error
----------- --

11 CREATE TRANGRP NAME(L4) AFFINITY(LUNAME) AFFLIFE(SIGNON);
DFHAU5038 INVALID AFFLIFE for AFFINITY.

15 CREATE TRANGRP NAME(U3)
16 AFFINITY(USERID) AFFLIFE(LOGON);

DFHAU5038 INVALID AFFLIFE for AFFINITY.

Figure 15. Sample error report

Chapter 7. Running the Builder 63

64 CICS Transaction Affinities Utility Guide

Appendix A. Details of what is detected

This appendix describes what is detected by the Detector and Reporter for each
affinity type. Additionally, it highlights the differences, if any, with what the Scanner
detects. (In general, the Scanner always detects more, because it covers paths that
may not get exercised by the Detector, and because it cannot see beyond the
command argument zero to eliminate commands that do not actually cause affinity.)

This information adds details to the general description in “What is detected” on
page 13.

This chapter contains the following information:

v “ENQ/DEQ”

v “TS commands” on page 66

v “LOAD HOLD/RELEASE” on page 66

v “RETRIEVE WAIT/START” on page 66

v “ADDRESS CWA” on page 67

v “GETMAIN SHARED/FREEMAIN” on page 67

v “LOAD/FREEMAIN” on page 67

v “CANCEL/DELAY/POST/START” on page 68

v “SPI commands” on page 69

v “WAIT commands” on page 69

ENQ/DEQ
v The affinity here is between all transactions that ENQ or DEQ on a given

resource. The match is made on the resource.

v It is possible for the ENQ/DEQ resource to be either a character string of length
1 to 255 bytes, or an address (which has an implied length of 4 bytes).

v The affinity relation can be GLOBAL, BAPPL, or USERID.

v Lifetime is always SYSTEM.

v Commands that result in a LENGERR condition are grouped together and treated
as a resource of ’LENGERR’. Any other condition results in a valid resource and
does not affect the treatment of the command.

v Because of affinity record size limitations, character string resources of greater
than 207 bytes in length are compressed to 207 bytes. The compression is
achieved by removing bytes from the middle of the string (these are probably
less significant than those at either end). This means that such resources may be
flagged as being the same when they are not, if the only variation is in the
removed bytes. Check all such compressed resources to see if that is the case.
The Reporter flags such compression, and pads the resource back out to the
correct length for the report, by inserting ’?’ characters.

© Copyright IBM Corp. 1994, 1999 65

|

TS commands
v The affinity here is between all transactions that use the same TS queue. It

applies to both MAIN and AUXILIARY TS. The match is made on the name of
the TS queue.

v The affinity relation can be GLOBAL, BAPPL, LUNAME, or USERID.

v Lifetime can be PCONV, LOGON, SIGNON, ACTIVITY, PROCESS,SYSTEM, and
PERMANENT. A MAIN queue cannot be recovered, regardless of definition, so
cannot cause PERMANENT.

v No data is collected if a TS queue is defined as remote or if a remote SYSID is
specified on the TS command. In such cases, the request is satisfied by a
remote CICS region or by a temporary storage pool in the coupling facility.

v Commands in error are treated in the same way as commands that give a
NORMAL response, so data is collected.

v If a TS queue is created and deleted within the same task, no data is collected.

Scanner differences: Scanner detects all instances of TS commands.

LOAD HOLD/RELEASE
v The affinity here is between all transactions that LOAD HOLD and RELEASE the

same program (or, more probably, table). The match is made on the program
name.

v The LOAD and RELEASE protocol applies only to programs that are defined with
RELOAD(NO). If the Detector can not establish the RELOAD attribute for some
reason, RELOAD(NO) is assumed.

v Once a LOAD HOLD has occurred for a program, any subsequent LOAD (with or
without HOLD) or RELEASE is part of the affinity.

v The affinity relation is GLOBAL or BAPPL.

v Lifetime is always SYSTEM.

v Commands in error are treated in the same way as commands that give a
NORMAL response, so data is collected.

v LOAD with no HOLD for programs defined as RESIDENT is not treated as an
affinity because relying on residency for sharing is inherently unsafe, the program
can be replaced by SET PROG() NEWCOPY.

v The incorrect use of RELEASE for a program defined with RELOAD(YES) is not
detected.

Scanner differences: Scanner detects all instances of LOAD, not just LOAD HOLD,
and all instances of RELEASE.

RETRIEVE WAIT/START
v The affinity here is between all the transactions that issue START commands for

a particular transaction at a terminal, where that transaction issues RETRIEVE
WAIT. The transaction that issues the RETRIEVE WAIT is also part of the affinity.
The match is made on the transid.

v The affinity relation can be GLOBAL or USERID.

v Lifetime can be SYSTEM or PERMANENT. PERMANENT is assumed if
PROTECT is specified on any START.

66 CICS Transaction Affinities Utility Guide

|

|

|

v If the transaction to be STARTed is defined as remote or a remote SYSID was
specified on the START command so that the command is function shipped to a
remote CICS region, no data is collected.

v Commands in error are treated in the same way as commands that give a
NORMAL response, so data is collected.

Scanner differences: Scanner detects all instances of RETRIEVE WAIT, and all
instances of START that either specify TERMID, or omit NOCHECK, or specify
REQID (because of CANCEL affinity).

ADDRESS CWA
v The affinity here is between all transactions that issue ADDRESS CWA.

v The affinity relation is GLOBAL or BAPPL.

v Lifetime is always SYSTEM.

Scanner differences: None.

GETMAIN SHARED/FREEMAIN
v The affinity here is between the transaction that obtains storage via GETMAIN

SHARED and the transaction that frees the same piece of storage via
FREEMAIN. Both transactions must be seen for there to be affinity. The match is
made on storage address.

v However, the situation is complicated by the fact that the storage address may
be passed to other transactions; and if they access the storage, they cannot be
detected , because the storage access does not take place through the CICS
API.

v The affinity relation may be GLOBAL, BAPPL,LUNAME, or USERID.

v Lifetime can be PCONV, LOGON, SIGNON, ACTIVITY, PROCESS, or SYSTEM.
However, the Detector always worsens LOGON and SIGNON to SYSTEM,
because of limitations in the way that this affinity is detected.

v Commands in error are ignored, as there is no address for matching GETMAIN
with FREEMAIN, no data is collected.

v A GETMAIN/FREEMAIN affinity is considered to be initiated from a terminal if the
GETMAIN is initiated from a terminal. Whether the FREEMAIN was so initiated or
not is irrelevant.

v Any unmatched GETMAIN SHAREDs are also reported if they have never
matched by the time a Detector stop occurs. They are output in a separate report
section. Note that on a start with restore data, they are not restored and are
deleted from the affinity file.

Scanner differences: Scanner finds all instances of GETMAIN SHARED and all
instances of FREEMAIN.

LOAD/FREEMAIN
v The affinity here is between the transaction that loads the program via LOAD and

the transaction that releases the same program via FREEMAIN. The match is
made on load point address.

v However, the situation is complicated by the fact that the load point address may
be passed to other transactions (for example, the program is actually a table);
and if they access the program, they cannot be detected . This is analogous to
storage address passing with GETMAIN SHARED/FREEMAIN.

Appendix A. Details of what is detected 67

|

|

|

v The LOAD and FREEMAIN protocol applies only to programs defined as
RELOAD(YES). Note that HOLD is irrelevant, as CICS Program Control never
sees the FREEMAIN, or knows the storage location of the individual task’s copy,
and so cannot release the program at task end. This implies that all LOADs must
be examined as they are all effectively LOAD HOLDs.

v The affinity relation may be GLOBAL, BAPPL, LUNAME, or USERID.

v Lifetime can be PCONV, LOGON, SIGNON, ACTIVITY, PROCESS,or SYSTEM.
However, the Detector always worsens LOGON and SIGNON to SYSTEM,
because of limitations in the way that this affinity is detected.

v Commands in error are ignored, because there is no load address on which to
match LOAD with FREEMAIN, so no data is collected.

LOADs with no SET option are ignored, because no load address is returned, so
no data is collected.

v A LOAD/FREEMAIN affinity is considered to be initiated from a terminal if the
LOAD is initiated from a terminal. Whether the FREEMAIN was so initiated or not
is irrelevant.

v Any unmatched LOADs are also reported if they have never matched by the time
a Detector stop occurs. They are output in a separate report section. Note that
on a start with restore data, they are not restored and are deleted from the
affinity file.

Scanner differences: Scanner finds all instances of LOAD and all instances of
FREEMAIN.

CANCEL/DELAY/POST/START
v The affinity here is between the transaction that issues the DELAY, POST or

START command and the transaction that issues the CANCEL command via
REQID. The match is on REQID.

v In order for another task to CANCEL a DELAY, REQID must be explicitly
specified on the DELAY command. If no REQID is specified on a DELAY
command, it cannot be canceled, and therefore cannot be detected.

In order for another task to CANCEL a START or POST, it is not necessary to
specify REQID on the command because CICS supplies a unique REQID that
may be used (unless START specifies NOCHECK). So only START commands
that do not both specify NOCHECK and omit REQID, and all POST commands,
are detected.

v Further, data is not collected for commands that expire on entry to Interval
Control, because they cannot be canceled (because an element control interval
(ICE) is not created). DELAY and POST commands get an EXPIRED response.
For START commands there is no such response; so ’expired on entry’ is
deduced if INTERVAL(0) was specified. This detects most ’expired on entry’
STARTs, but not all.

v START, DELAY, and POST commands in error are ignored, so no data is
collected.

v CANCEL commands that omit REQID are ignored because they cannot cancel
another task. CANCEL commands that return a NOTFND response are also
ignored because the ICE must have expired and the CANCEL must have failed.
No data is collected for these.

v REQIDs are assumed to be unique; that is, there are no simultaneous pairs of
START/CANCEL using the same REQID. Having such a pair violates CICS
programming guidelines, and the results from CICS are unpredictable.

v The affinity relation for START may be GLOBAL, BAPPL, LUNAME, or USERID.

68 CICS Transaction Affinities Utility Guide

|

|

|

v Lifetime can be PCONV, LOGON, SIGNON, ACTIVITY, PROCESS, SYSTEM, or
PERMANENT. The PROTECT option determines whether SYSTEM or
PERMANENT would be used. However, the Detector always worsens LOGON
and SIGNON to SYSTEM or PERMANENT, because of limitations in the way that
this affinity is detected.

The affinity relation for DELAY and POST may be GLOBAL, BAPPL, LUNAME,
or USERID.

v Lifetime can be only SYSTEM, PROCESS, ACTIVITY, or PCONV. If the affinity
relation is LUNAME or USERID, the lifetime must be PCONV because neither
DELAY nor POST exist beyond task termination.

v If the transaction specified on a START or CANCEL command is defined as
remote, or a remote SYSID was specified on the command so that the command
is function shipped to a remote CICS region, no data is collected. (It is not
possible to function ship POST or DELAY commands.)

v A CANCEL affinity is considered to be initiated from a terminal if the START,
DELAY or POST is initiated from a terminal. Whether the CANCEL was so
initiated or not is irrelevant.

Scanner differences: Scanner detects all instances of POST, all instances of DELAY
REQID, all instances of CANCEL REQID, and all instances of START that either
omit NOCHECK or specify REQID or specify TERMID (because of RETRIEVE
WAIT affinity).

SPI commands
v The commands included here are INQUIRE, SET, CREATE, DISCARD, ENABLE,

DISABLE, EXTRACT EXIT, COLLECT STATISTICS, PERFORM, and RESYNC.

v CBTS BROWSE COMMANDS are treated as inquire COMMANDS.

v The affinity here is not an affinity between transactions, but rather an affinity with
the system on which the command was issued; that is, a transaction-system
affinity. Such affinities do not generate transaction affinity groups, because it does
not generally make sense to dynamically route such transactions.

v The use of these commands does require reporting, however, because the
system programmer should be aware of the transactions and programs that issue
such commands.

Scanner differences: None.

WAIT commands
v The affinity here is really an inter-transaction affinity between the issuer of the

WAIT EVENT, WAIT EXTERNAL, or WAITCICS command, and one or more
posters. However, the poster of the ECB(s) associated with the WAIT command
cannot be detected, because this is not performed via the CICS API. Only half
the affinity can be detected.

v This means affinity transaction groups cannot be created, because the affinity
degenerates to an affinity with the system on which the WAIT command was
issued; that is, a transaction-system affinity.

v The use of WAIT commands does require reporting, however, because the
system programmer should be aware of the transactions and programs that issue
such commands, and should attempt to locate the posters and so create the
correct inter-transaction affinity groups.

Scanner differences: None.

Appendix A. Details of what is detected 69

|

|

|

|

70 CICS Transaction Affinities Utility Guide

Appendix B. Correlating Scanner and Reporter output to
source

This appendix describes how to match the EXEC CICS command in the Reporter
report and/or the Scanner detail report with the actual program source code. It also
gives some examples of the procedures described.

Reporter output

The reported offset of a command is the offset from the start of the load module of
the BALR to the CICS stub. To get the offset from the start of the program, subtract
the length of the CICS stub from the offset reported. (You may also need to subtract
the lengths of any additional preceding CSECTs.) You can then use the compiler
listing to find the command.

Scanner output

The reported offset of a command is the offset from the start of the load module of
the CICS command argument zero.6 This is a constant and is therefore located in
the literal pool for the program. As with the Reporter, subtract the length of the
CICS stub and preceding CSECTS to get the offset from the start of the program.
You should then be able to locate the argument zero in the compiler listing. Next,
match the argument zero to the command, which involves finding the instruction
that referenced the argument zero, using the compiler listing.

Examples

This section gives some examples of the procedures for the Scanner.

Example 1–Assembler-language

Before the BALR to the CICS stub, the CICS translator generates an LA instruction
with the argument zero as source. For example:
LA 14,=X'02028000080700000000000000000000000000000000'

To locate the EXEC CICS command, you can match the argument zero in the literal
pool with the same argument zero in the LA instruction.

6. For an explanation of argument zero , see “Notes on terminology” on page x.

© Copyright IBM Corp. 1994, 1999 71

Example 2–VS COBOL II

The literal pool in VS COBOL II is part of the CGT. Having calculated the offset
from the start of the program, you should subtract the start of the CGT from your
calculated offset to get the offset within the CGT. In the listing, there is an MVC
instruction with the argument zero as the source, of the form:
MVC D1(L,R1),D2(R2) DFHEIV0 PGMLIT AT ...

where:

DFHEIV0
is the slot in working storage into which the argument zero is copied before
the BALR to the CICS stub

D2 is the decimal offset of the argument zero within the CGT (which you have
just calculated)

R2 is the CGT base register

Once you know the offset of the argument zero within the CGT, you can find the
MVC and hence the EXEC CICS command.

An example of finding an EXEC CICS command is given in Figure 16 on page 73.

72 CICS Transaction Affinities Utility Guide

For this, the calculations are:
Scanner offset = X'7A6'
CICS stub length = X'28'
Offset of CGT = X'B8'
CGT base register = GPR 10
Offset within CGT = X'7A6' - X'28' - X'B8' = X'6C6' = 1734 (decimal)
MVC instruction looks like:
MVC d(l,r),1734(10) DFHEIV0 PGMLIT AT ...

To determine the EXEC CICS command:

1. Look at the Assembler-language for
MVC d(l,r),1734(10) DFHEIV0 PGMLIT AT ...

which occurs for the first MOVE

For the Scanner output:
CICS TRANSACTION AFFINITIES UTILITY 1995/11/19 Page 1
LOAD MODULE SCANNER - DETAILED LISTING OF CICS.PRODN1.LOCLLOAD
Module Name - ACCT04 / Load Module Length - 000159D0 / Module Entry Point - 00000028
Offset Storage Content (HEX) EDF DEBUG Possible Command Affinity
-------- -- --------- ----------------------- --------
000007A6 0A02E0000700004100 00669 WRITEQ TS Trans
Total possible Affinity commands = 1
Total possible MVS POSTs = 0

The COBOL source after translation was:
001123
001124 *EXEC CICS WRITEQ TS QUEUE('ACERLOG') FROM(ACCTERRO)
001125 * LENGTH(ERR-LNG) END-EXEC.
001126 MOVE ' \ ' 00669 ' TO DFHEIV0 97800000 1057
001127 MOVE 'ACERLOG' TO DFHC0080 1034
001128 CALL 'DFHEI1' USING DFHEIV0 DFHC0080 ACCTERRO ERR-LNG. EXT 1057 1034 380 861

The equivalent Assembler-language is:
001126 MOVE

002764 D210 8558 A6C6 MVC 1368(17,8),1734(10) DFHEIV0 PGMLIT AT +1718
00276A 9240 8569 MVI 1385(8),X'40' DFHEIV0+17
00276E D232 856A 8569 MVC 1386(51,8),1385(8) DFHEIV0+18 DFHEIV0+17

001127 MOVE
002774 D207 8340 ACEA MVC 832(8,8),3306(10) DFHC0080 PGMLIT AT +3290

001128 CALL
00277A 4130 8558 LA 3,1368(0,8) DFHEIV0
00277E 5030 D1B0 ST 3,432(0,13) TS2=0
002782 4130 8340 LA 3,832(0,8) DFHC0080
002786 5030 D1B4 ST 3,436(0,13) TS2=4
00278A 4130 75A8 LA 3,1448(0,7) ACCTERRO
00278E 5030 D1B8 ST 3,440(0,13) TS2=8
002792 4130 9A0E LA 3,2574(0,9) ERR-LNG
002796 5030 D1BC ST 3,444(0,13) TS2=12
00279A 9680 D1BC OI 444(13),X'80' TS2=12
00279E 4110 D1B0 LA 1,432(0,13) TS2=0
0027A2 4100 D150 LA 0,336(0,13) CLLE@=2
0027A6 0530 BALR 3,0
0027A8 5030 D158 ST 3,344(0,13) TGT FDMP/TEST-INFO. AREA +0
0027AC 58F0 A000 L 15,0(0,10) V(DFHEI1)
0027B0 05EF BALR 14,15
0027B2 50F0 D078 ST 15,120(0,13) TGTFIXD+120
0027B6 BF38 D089 ICM 3,8,137(13) TGTFIXD+137
0027BA 0430 SPM 3,0

Figure 16. Example for finding an EXEC CICS command from the argument zero

Appendix B. Correlating Scanner and Reporter output to source 73

001126 MOVE

2. Look at the COBOL source for the MOVE at line 001126. This is for the EXEC
CICS WRITEQ TS command starting on line 001124.

74 CICS Transaction Affinities Utility Guide

Appendix C. Useful tips when analyzing Transaction Affinities
Utility reports

Sometimes the report produced by the Reporter from data gathered from the
Detector can contain some results that appear odd at first glance. This appendix
gives tips for resolving such results.

COBOL affinities

If an application program is invoked using the native CALL statement, CICS COBOL
run-time code issues an EXEC CICS LOAD HOLD for the program and branches to
it directly. This causes affinity only if the program is not reentrant; that is, if it
modifies itself. Otherwise, there is no affinity.

CICS COBOL run-time code writes data to a TS queue if an abnormal termination
occurs. The TS queue name used is “CEBR” plus the termid of the terminal, or
blanks if there is no terminal. This does not cause affinity.

LOGON or SYSTEM when PCONV expected

When dealing with an application that is known to use TS queues within a
pseudoconversation, but never beyond, there may be occurrences in the report of
affinity groups that appear as LUNAME/SYSTEM or LUNAME/LOGON, instead of
the expected LUNAME/PCONV.

v A SYSTEM lifetime can be explained if the installation uses a session manager
that logs users off after a pre-determined quiet time. When the log off occurs in
the middle of a pseudoconversation, the Transaction Affinities Utility notices that
the TS queue still exists, and increases the lifetime to SYSTEM.

v A LOGON lifetime can be explained by the user switching off the terminal in the
middle of a pseudoconversation and causing a VTAM® line error. This causes an
error transaction to be attached internally at the terminal. The affinity utility
program notices that the TS queue exists at the end of that transaction, and
increases the lifetime to LOGON.

In both these circumstances the real lifetime is PCONV, because, although the TS
queue exists at the end of the pseudoconversation, the data in it will never be used
again. Normally the first action of a new pseudoconversation is to delete the
contents of all such TS queues for that terminal to ensure that everything is tidy.

Unrecognized Transids

Transids that consist of garbage data are reported in the Transaction Affinities Utility
report. Such transids are not known to CICS, and most contain the same
hexadecimal data. This is probably caused by a bug in an application that causes
the EIB to be overwritten.

© Copyright IBM Corp. 1994, 1999 75

76 CICS Transaction Affinities Utility Guide

Appendix D. Diagnostics

This appendix contains these sections:

v “Detector table manager diagnostics”

v “Detector CAFB request queue manager diagnostics” on page 80

v “Date formatter diagnostics” on page 80

Detector table manager diagnostics

This section lists the meaning for each possible value of the call parameters that
are included in the error messages issued if an error occurs on a call to the
Detector and Builder table manager, CAUTABM.

Function code values

AUTM_CREATE_POOL 1
AUTM_DESTROY_POOL 2
AUTM_CREATE_TABLE 3
AUTM_DESTROY_TABLE 4
AUTM_ADD_ELEMENT 5
AUTM_DELETE_ELEMENT 6
AUTM_REPLACE_ELEMENT 7
AUTM_GET_KEY_ELEMENT 8
AUTM_GET_FIRST_ELEMENT 9
AUTM_GET_NEXT_ELEMENT 10
AUTM_GET_ELEMENT 11
AUTM_GET_KEY_GE_ELEMENT 12

© Copyright IBM Corp. 1994, 1999 77

Table identifier values

AUTM_EDSR 1
AUTM_EDST 2
AUTM_EDR 3
AUTM_EDT 4
AUTM_TSQ 5
AUTM_TST 6
AUTM_LRP 7
AUTM_LRT 8
AUTM_SRS 9
AUTM_SRT 10
AUTM_CWA 11
AUTM_CWT 12
AUTM_GFA 13
AUTM_GFM 14
AUTM_LFA 15
AUTM_LFM 16
AUTM_ICR 17
AUTM_ICM 18
AUTM_SPI 19
AUTM_WAIT 20
AUTM_TT 21
AUTM_UT 22
AUTM_BLD_DNT 28
AUTM_BLD_GNT 29
AUTM_BLD_TT 30
AUTM_BLD_MERGED 31

78 CICS Transaction Affinities Utility Guide

Reason code values

AUTM_INVALID_FUNCTION 0
AUTM_NO_STORAGE 1
AUTM_ELEMENT_NOT_FOUND 2
AUTM_ELEMENT_EXISTS 3
AUTM_INVALID_TABLE 4
AUTM_IEFUSI_HIT 5
AUTM_TABLE_EXISTS 6
AUTM_TABLE_DOES_NOT_EXIST 7
AUTM_POOL_EXISTS 8
AUTM_POOL_DOES_NOT_EXIST 9
AUTM_INVALID_CURSOR 10
AUTM_DEFAULT_SIFD_ERROR 192
AUTM_DEFAULT_SIFA_ERROR 193
AUTM_DEFAULT_DSP_ERROR 194
AUTM_DEFAULT_AVL_ERROR 195
AUTM_SIFD_CREATE_POOL_ERROR 196
AUTM_SIFA_CREATE_POOL_ERROR 197
AUTM_DSP_CREATE_POOL_ERROR 198
AUTM_SIFD_DESTROY_POOL_ERROR 199
AUTM_SIFA_DESTROY_POOL_ERROR 200
AUTM_DSP_DESTROY_POOL_ERROR 201
AUTM_AVL_CREATE_TABLE_ERROR 202
AUTM_SIFA_CREATE_TABLE_ERROR 203
AUTM_AVL_DESTROY_TABLE_ERROR 204
AUTM_SIFA_DESTROY_TABLE_ERROR 205
AUTM_AVL_ADD_ERROR 206
AUTM_SIFA_ADD_ERROR 207
AUTM_AVL_GET_KEY_ERROR 208
AUTM_AVL_GET_FIRST_ERROR 209
AUTM_AVL_GET_NEXT_ERROR 210
AUTM_AVL_DELETE_ERROR 211
AUTM_SIFA_DELETE_ERROR 212
AUTM_AVL_REPLACE_ERROR 213
AUTM_DSP_RESERVE_ERROR 214
AUTM_DSP_RELEASE_ERROR 215
AUTM_DSPSERV_CREATE_ERROR 216
AUTM_DSPSERV_DELETE_ERROR 217
AUTM_ALESERV_ADD_ERROR 218
AUTM_ALESERV_DELETE_ERROR 219
AUTM_AVL_GET_ERROR 220

Appendix D. Diagnostics 79

Detector CAFB request queue manager diagnostics

This section
Lists the meaning for each possible value of the call parameters that are
included in the error messages issued if an error occurs on a call to the
Detector CAFB request queue manager, CAUCAFP.

Function code values
AUCP_ADD_CELL_FIRST 1
AUCP_ADD_CELL_LAST 2
AUCP_CREATE_CPOOL 3
AUCP_DESTROY_CPOOL 4
AUCP_GET_CELL 5

Reason code values
AUCP_NO_STORAGE 1
AUCP_CPOOL_FAILED 2
AUCP_INVALID_FUNCTION 3
AUCP_NOT_FOUND 4

Date formatter diagnostics

This section
Lists the meaning for each possible value of the call parameters that are
included in the error messages issued if an error occurs on a call to the
Transaction Affinities Utility date formatter, CAUCAFDT.

Reason code values
CAUD_NO_DATE 1
CAUD_FORMAT 2

80 CICS Transaction Affinities Utility Guide

Index

A
activity 5
affinity

avoiding 6
combining basic affinity transaction groups 59
control record VSAM file 17
data VSAM files 17
inter-transaction 4
lifetimes 4
overview 3
programming techniques 5

safe 6
suspect 6
unsafe 6

relations 4
transaction group definitions, producing 46
transaction-system 4

affinity data VSAM files 17
affinity transaction group definitions, producing 46
affinity transaction groups, combining 59
analyzing affinity utility program reports

COBOL affinities 75
LOGON or SYSTEM when PCONV expected 75
unrecognized transids 75

B
BAPPL affinity relation 4
basic affinity transaction groups, combining 59
Builder 55

changes to CAUJCLBL job 55
combined affinity transaction group definitions 58
combining basic affinity transaction groups 59
data sets processed report 61
empty transaction groups report 61
error report 62
group merge report 61
HEADER statements 58
input parameters 55
output 58
overview 18
running 55
syntax for input to 56

C
CAFB request queue manager diagnostics 80
CAFB transaction 16
CAFF transaction 31
CAFF01 screen, to control the Detector 31

displaying 32
example 32
pausing data collection 34
resuming data collection 34
starting data collection 33
stopping data collection 35

CAFF02, Detector options screen
example 36

CICS BTS, detection of 14
CICSPlex SM 1, 18, 55
collecting data

how to 15
combining basic affinity transaction groups 59
control record VSAM file 17
correlating output

example, assembler language 71
example, VS COBOL II 72
examples of 71
Reporter output 71
Scanner output 71

Cross System Product and affinities 50
CSP and affinities 50

D
data space size 21
date formatter diagnostics 80
detailed report (Scanner)

creating 27
output contents 28
output example 29

details of what is detected
ADDRESS CWA commands 67
CANCEL commands 68
DELAY commands 68
DEQ commands 65
ENQ commands 65
FREEMAIN commands 67
GETMAIN SHARED/FREEMAIN commands 67
LOAD commands 67
POST commands 68
RETRIEVE START commands 66
RETRIEVE WAIT commands 66
SPI commands 69
START commands 68
TS commands 66
WAIT commands 69

Detector
affinity data VSAM files 17
CAFB request queue manager diagnostics 80
CAFB transaction 16
changing options 36
collecting data 15
control record VSAM file 17
controlling 15
displaying the control screen 32
how data is collected 15
how data is saved 16
options screen, CAFF02 36

example 36
overview 12
pausing data collection 34
performance 18
resuming data collection 34

© Copyright IBM Corp. 1994, 1999 81

Detector (continued)
saving data 17
starting data collection 33
stopping data collection 35
table manager diagnostics 77
what is detected 13
what is not detected 14
worsening of affinities lifetimes 14
worsening of affinities relations 14

diagnostics
CAFB request queue manager 80
data formatter 80
table manager 77

dynamic transaction routing
benefits 3
compared to static routing 1
cost 3
overview 1

G
global affinity relation 4

H
HEADER statements, Builder 58
HOLD commands 66

I
installing the affinity utility program

creating the VSAM files 21
data space size 21
overview 21
restarting your CICS region 23
tailoring your CICS startup job 23

L
lifetime of affinities

activity 5
logon 5
overview 4
permanent 5
process 5
pseudoconversation 5
signon 5
system 5
worsening 14

log off, detection of 14
logon affinity lifetime 5
LUname affinity relation 4

P
permanent affinity lifetime 5
process 5
programming techniques for transaction affinity

safe 6
suspect 6
unsafe 6

protecting applications from one another 7
pseudoconversation affinity lifetime 5
pseudoconversation end, 13

R
relation of affinities

BAPPL 4
global 4
LUname 4
overview 4
userid 4
worsening 14

RELEASE commands 66
Reporter 41

affinity transaction group definitions, producing 46
affinity transaction groups, modifying 48
compressing affinity data 49
output 42
output report 43
output report (example) 43
overview 18
running 31, 41
understanding the affinities 48
using the report 47

reports
affinity report, Reporter 43
analyzing, useful tips 75
creating a detailed report, Scanner 27
creating a summary report, Scanner 25
data sets processed report, Builder 61
detailed, contents of 28
detailed report, Scanner 27
empty transaction groups report, Builder 61
error report, Builder 62
group merge report, Builder 61

requesting region 2
routing region 2

S
safe programming techniques 6
saving data 16
Scanner

creating a detailed report 27
input parameters 27
output contents 28

creating a summary report 25
input parameters 25
output contents 26

overview 12
running 25

sign off, detection of 14
signon affinity lifetime 5
static transaction routing

compared to dynamic routing 1
summary report (Scanner)

creating 25
output contents 26
output example 27

suspect programming techniques 6
system affinity lifetime 5

82 CICS Transaction Affinities Utility Guide

T
target region 2

temporary storage compression 49

Transaction Affinities Utility

Builder overview 18
commands detected 11
control record VSAM file 17
data VSAM files 17
date formatter diagnostics 80
Detector overview 12
overview 9
preparing to use 21
Reporter overview 18
Scanner overview 12
what is detected 13
what is not detected 14

transaction affinity

avoiding 6
combining basic affinity transaction groups 59
control record VSAM file 17
data VSAM files 17
inter-transaction 4
lifetimes 4
overview 3
programming techniques 5

safe 6
suspect 6
unsafe 6

relations 4
transaction group definitions, producing 46
transaction-system 4

transaction group definitions, producing 46

transaction isolation 7

transaction routing

dynamic (overview) 1
dynamic versus static 1

U
unsafe programming techniques 6

userid affinity relation 4

V
VSAM

creating the VSAM files 21
defining VSAM files to CICS 22

VSAM files 17

Index 83

84 CICS Transaction Affinities Utility Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–870229

– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication number and title

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 1999 85

IBMR

Program Number: 5655-147

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1777-02

Spine information:

IBM CICS TS for OS/390 CICS Transaction Affinities Utility Guide Release 3

